Cardioprotective and Hypolipidemic Effect of Cardamom Oil-Loaded Lipid Carrier Nanoparticles in a Rat Model of Streptozotocin-Induced Diabetes

Authors

  • Van Abdulqader Ahmed Department of Basic Sciences, College of Pharmacy, University of Sulaimani, Kurdistan Region, Iraq https://orcid.org/0009-0003-7412-1411
  • Basima Sadq Ahmed Department of Basic Sciences, College of Pharmacy, University of Sulaimani, Kurdistan Region, Iraq https://orcid.org/0000-0001-9997-1031
  • Tavga Ahmed Aziz Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Kurdistan Region, Iraq https://orcid.org/0000-0003-2742-6127

DOI:

https://doi.org/10.54133/ajms.v6i1.498

Keywords:

Cardamom oil, Cardioprotective effect, Diabetes, Lipid nanoparticles, Oxidative stress, Rats

Abstract

Background: Diabetic cardiomyopathy (DCM) is a serious complication of poorly managed diabetes. Inflammation, hyperglycemia, oxidative stress, hyperlipidemia, and other factors all play a role in DCM pathogenesis. Objective: To investigate the cardioprotective effects of cardamom oil-loaded lipid carrier nanoparticles (CEO-LC NPs) on streptozotocin (STZ)-induced diabetes in rats. Methods: Twenty-four male rats were randomly divided into four groups of six each. STZ (50 mg/kg) caused diabetes in all groups but the negative control. The diabetic control group (G1) received a normal saline solution. For 28 days, group G2 received CEO-LC NPs (600 mg/kg), group G3 received empagliflozin (10 mg/kg), and group G4 (no diabetes) received normal saline as a negative control. On day 29, blood samples were taken to determine blood glucose, cholesterol, LDL, HDL, and triglyceride levels, as well as oxidative stress markers. Additionally, atherogenic indices were calculated. Heart tissue was sent for histopathological examination. Results: In diabetic rats treated with CEO-LC NPs, serum glucose, cholesterol, LDL, and triglyceride levels were significantly reduced, while HDL levels increased. The CEO-LC NP treatment also reduced oxidative stress by increasing total antioxidant capacity while decreasing malondialdehyde (MDA). Furthermore, diabetic rats treated with CEO-LC NP had significantly lower AIP, CRI-I, and CRI-II ratios. Conclusions: CEO-LC NPs improve cardioprotection in STZ-induced diabetic rats by lowering plasma lipid levels and oxidative stress.

Downloads

Download data is not yet available.

References

Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63-69. doi: 10.1136/postgradmedj-2015-133281. DOI: https://doi.org/10.1136/postgradmedj-2015-133281

Abdul-Ghani MA, Jayyousi A, DeFronzo RA, Asaad N, Al-Suwaidi J. Insulin resistance the link between T2DM and CVD: Basic mechanisms and clinical implications. Curr Vasc Pharmacol. 2019;17(2):153-163. doi: 10.2174/1570161115666171010115119. DOI: https://doi.org/10.2174/1570161115666171010115119

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137-188. doi: 10.1152/physrev.00045.2011. DOI: https://doi.org/10.1152/physrev.00045.2011

Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56(25):2115-2125. doi: 10.1016/j.jacc.2010.07.033. DOI: https://doi.org/10.1016/j.jacc.2010.07.033

Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med. 2006;41(6):851-861. doi: 10.1016/j.freeradbiomed.2006.06.007. DOI: https://doi.org/10.1016/j.freeradbiomed.2006.06.007

Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798-805. doi: 10.2337/diabetes.55.03.06.db05-1039. DOI: https://doi.org/10.2337/diabetes.55.03.06.db05-1039

Mondal S, Soumya NPP, Mini S, Sivan SK. Bioactive compounds in functional food and their role as therapeutics. Bioact Comp Health Dis. 2021;4(3):24-39. doi: 10.31989/bchd.v4i3.786. DOI: https://doi.org/10.31989/bchd.v4i3.786

Ojha SK, Nandave M, Arora S, Narang R, Dinda AK, Arya DS. Chronic administration of Tribulus terrestris Linn. Extract improves cardiac function and attenuates myocardial infarction in rats. Int J Pharmacol. 2008;4(1):1-10. doi: 10.3923/ijp.2008.1.10. DOI: https://doi.org/10.3923/ijp.2008.1.10

Ndefo UA, Anidiobi NO, Basheer E, Eaton AT. Empagliflozin (Jardiance): a novel SGLT2 inhibitor for the treatment of type-2 diabetes. Pharm Ther. 2015;40(6):364.

Chen L, Leung P. Inhibition of the sodium glucose co‐transporter‐2: its beneficial action and potential combination therapy for type 2 diabetes mellitus. Diabetes Obes Metab. 2013;15(5):392-402. doi: 10.1111/dom.12064. DOI: https://doi.org/10.1111/dom.12064

Chawla G, Chaudhary KK. A complete review of empagliflozin: Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes Metab Syndr. 2019;13(3):2001-2008. doi: 10.1016/j.dsx.2019.04.035. DOI: https://doi.org/10.1016/j.dsx.2019.04.035

Butt MS, Naz A, Sultan MT, Qayyum MMN. Anti-oncogenic perspectives of spices/herbs: A comprehensive review. EXCLI J. 2013;12:1043.

Bhattacharjee S, Rana T, Sengupta A. Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev. 2007;8(4):578-582. PMID: 18260732.

Jamal A, Javed K, Aslam M, Jafri M. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J Ethnopharmacol. 2006;103(2):149-153. doi: 10.1016/j.jep.2005.07.016. DOI: https://doi.org/10.1016/j.jep.2005.07.016

Verma SK, Jain V, Katewa SS. Blood pressure lowering, fibrinolysis enhancing and antioxidant activities of cardamom (Elettaria cardamomum). Indian J Biochem Biophys. 2009;46(6):503-506. PMID: 20361714.

Al-Zuhair H, El-Sayeh B, Ameen H, Al-Shoora H. Pharmacological studies of cardamom oil in animals. Pharmacol Res. 1996;34(1-2):79-82. doi: 10.1006/phrs.1996.0067. DOI: https://doi.org/10.1006/phrs.1996.0067

Qiblawi S, Dhanarasu S. Chemopreventive effect of cardamom (Elettaria cardamomum L.) against benzo (α) pyrene-induced forestomach papillomagenesis in swiss albino mice. J Environ Pathol Toxicol Oncol. 2015;34(2). doi: 10.1615/jenvironpatholtoxicoloncol.2015010838. DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.2015010838

Yadav AS, Bhatnagar D. Free radical scavenging activity, metal chelation and antioxidant power of some of the Indian spices. Biofactors. 2007;31(3‐4):219-227. doi: 10.1002/biof.5520310309. DOI: https://doi.org/10.1002/biof.5520310309

Suneetha WJ, Krishnakantha T. Cardamom extract as inhibitor of human platelet aggregation. Phytother Res. 2005;19(5):437-440. doi: 10.1002/ptr.1681. DOI: https://doi.org/10.1002/ptr.1681

Barradas TN, de Holanda e Silva KG. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ Chem Lett. 2021;19(2):1153-1171. doi: 10.1007/s10311-020-01142-2. DOI: https://doi.org/10.1007/s10311-020-01142-2

Nahr FK, Ghanbarzadeh B, Hamishehkar H, Kafil HS. Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. J Funct Foods. 2018;40:1-8. doi: 10.1016/j.fbio.2020.100526. DOI: https://doi.org/10.1016/j.jff.2017.09.028

Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protocols Pharmacol. 2015;70(1):5.47. 1-5.20. doi: 10.1002/0471141755.ph0547s70. DOI: https://doi.org/10.1002/0471141755.ph0547s70

Olamoyegun MA, Oluyombo R, Asaolu SO. Evaluation of dyslipidemia, lipid ratios, and atherogenic index as cardiovascular risk factors among semi-urban dwellers in Nigeria. Ann Afr Med. 2016;15(4):194. doi: 10.4103/1596-3519.194280. DOI: https://doi.org/10.4103/1596-3519.194280

Dobiasova M. AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitrni Lekarstvi. 2006;52(1):64-71.

Cai G, Shi G, Xue S, Lu W. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine. 2017;96(37). doi: 10.1097/MD.0000000000008058. DOI: https://doi.org/10.1097/MD.0000000000008058

Dobiášová M, Frohlich J, Šedová M, Cheung MC, Brown BG. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J Lipid Res. 2011;52(3):566-571. doi: 10.1194/jlr.P011668. DOI: https://doi.org/10.1194/jlr.P011668

Desai GM, Raghunandana R, Akka KK, Bandi BC. A cross sectional study of serum gamaglutamyl transferase acitivity with reference to atherogenic lipid indices in patients with ischemic heart disease. J Evol Med Dent Sci. 2014;3(10):2655-2663. doi: 10.14260/JEMDS/2014/2188. DOI: https://doi.org/10.14260/jemds/2014/2188

Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovas Toxicol. 2001;1:181-193. doi: 10.1385/ct:1:3:181. DOI: https://doi.org/10.1385/CT:1:3:181

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, Mansouri S, Alavian SM, Badri-Fariman M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Alternat Med. 2019;19(1):1-11. doi: 10.1186/s12906-019-2465-0. DOI: https://doi.org/10.1186/s12906-019-2465-0

Fatemeh Y, Siassi F, Rahimi A, Koohdani F, Doostan F, Qorbani M, et al. The effect of cardamom supplementation on serum lipids, glycemic indices and blood pressure in overweight and obese pre-diabetic women: a randomized controlled trial. J Diabetes Metab Disord. 2017;16:1-9. doi: 10.1186/s40200-017-0320-8. DOI: https://doi.org/10.1186/s40200-017-0320-8

Paul K, Bhattacharjee P, Chatterjee N, Pal TK. Nanoliposomes of supercritical carbon dioxide extract of small cardamom seeds redresses type 2 diabetes and hypercholesterolemia. Recent Patents Biotechnol. 2019;13(4):284-303. doi: 10.2174/1872208313666190404101336. DOI: https://doi.org/10.2174/1872208313666190404101336

Winarsi H, Susilowati S. Functional-drink rich in antioxidant cardamom-rhizome (Amomum cardamomum willd) suppresses inflammation and improves lipid profile. Food Res. 2020;4(6):2169-2175. doi: 10.26656/fr.2017.4(6).265. DOI: https://doi.org/10.26656/fr.2017.4(6).265

Azimi P, Ghiasvand R, Feizi A, Hosseinzadeh J, Bahreynian M, Hariri M, et al. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood Pressure. 2016;25(3):133-140. doi: 10.3109/08037051.2015.1111020. DOI: https://doi.org/10.3109/08037051.2015.1111020

Rahman MM, Alam MN, Ulla A, Sumi FA, Subhan N, Khan T, et al. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats. Lipids Health Dis. 2017;16(1):1-12. doi: 10.1186/s12944-017-0539-x. DOI: https://doi.org/10.1186/s12944-017-0539-x

Winarsi H, Sasongko N, Purwanto A, Nuraeni I. Effect of cardamom leaves extract as antidiabetic, weight lost and hypocholesterolemic to alloxan-induced Sprague Dawley diabetic rats. Int Food Res J. 2014;21(6):2253.

Hamzaa RG, Osman NN. Using of coffee and cardamom mixture to ameliorate oxidative stress induced in γ-irradiated rats. Biochem Anal Biochem. 2012;1(113):2161-1009. doi: 10.4172/2161-1009.1000113. DOI: https://doi.org/10.4172/2161-1009.1000113

Saeed A, Sultana B, Anwar F, Mushtaq M, Alkharfy KM, Gilani AH. Antioxidant and antimutagenic potential of seeds and pods of green cardamom (Elettaria cardamomum). Intl J Pharmacol. 2014;10(8):461-469. doi: 10.3923/ijp.2014.461.469. DOI: https://doi.org/10.3923/ijp.2014.461.469

Khan A-u, Khan QJ, Gilani A-H. Pharmacological basis for the medicinal use of cardamom in asthma. Bangladesh J Pharmacol. 2011;6(1):34-37. doi: 10.3329/bjp.v6i1.8133. DOI: https://doi.org/10.3329/bjp.v6i1.8133

Martins F, Noso TM, Porto VB, Curiel A, Gambero A, Bastos DH, et al. Maté tea inhibits in vitro pancreatic lipase activity and has hypolipidemic effect on high‐fat diet‐induced obese mice. Obesity. 2010;18(1):42-47. doi: 10.1038/oby.2009.189. DOI: https://doi.org/10.1038/oby.2009.189

Galleano M, Calabro V, Prince PD, Litterio MC, Piotrkowski B, Vazquez‐Prieto MA, et al. Flavonoids and metabolic syndrome. Ann N Y Acad Sci. 2012;1259(1):87-94. doi: 10.1111/j.1749-6632.2012.06511.x. DOI: https://doi.org/10.1111/j.1749-6632.2012.06511.x

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, Mansouri S, Alavian SM, Badri-Fariman M, et al. Green cardamom increases Sirtuin-1 and reduces inflammation in overweight or obese patients with non-alcoholic fatty liver disease: a double-blind randomized placebo-controlled clinical trial. Nutr Metab. 2018;15(1):1-12. doi: 10.1186/s12986-018-0297-4. DOI: https://doi.org/10.1186/s12986-018-0297-4

Gaziano JM, Hennekens CH, O’Donnell CJ, Breslow JL, Buring JE. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation. 1997;96(8):2520-2525. doi: 10.1161/01.cir.96.8.2520. DOI: https://doi.org/10.1161/01.CIR.96.8.2520

Nair D, Carrigan TP, Curtin RJ, Popovic ZB, Kuzmiak S, Schoenhagen P, et al. Association of total cholesterol/high‐density lipoprotein cholesterol ratio with proximal coronary atherosclerosis detected by multislice computed tomography. Prevent Cardiol. 2009;12(1):19-26. doi: 10.1111/j.1751-7141.2008.00011.x. DOI: https://doi.org/10.1111/j.1751-7141.2008.00011.x

Varghese JF, Patel R, Yadav U. Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis. Curr Cardiol Rev. 2018;14(1):4-14. doi: 10.2174/1573403X13666171009112250. DOI: https://doi.org/10.2174/1573403X13666171009112250

Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and oxidative stress: mechanisms and management in elderly. Antioxid Redox Signal. 2017;27(14):1083-1124. doi: 10.1089/ars.2016.6963. DOI: https://doi.org/10.1089/ars.2016.6963

Goyal SN, Sharma C, Mahajan UB, Patil CR, Agrawal YO, Kumari S, et al. Protective effects of cardamom in isoproterenol-induced myocardial infarction in rats. Int J Mol Sci. 2015;16(11):27457-27469. doi: 10.3390/ijms161126040. DOI: https://doi.org/10.3390/ijms161126040

Kanthlal S, Joseph J, Paul B, P UD. Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin Exp Hypertens. 2020;42(7):581-589. doi: 10.1080/10641963.2020.1739699. DOI: https://doi.org/10.1080/10641963.2020.1739699

Abu Gazia M, El-Magd MA. Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs. 2019;206(1-2):62-72. doi: 10.1159/000496109. DOI: https://doi.org/10.1159/000496109

Romuk E, Jacheć W, Kozielska-Nowalany E, Birkner E, Zemła-Woszek A, Wojciechowska C. Superoxide dismutase activity as a predictor of adverse outcomes in patients with nonischemic dilated cardiomyopathy. Cell Stress Chaperones. 2019;24:661-673. doi: 10.1007/s12192-019-00991-3. DOI: https://doi.org/10.1007/s12192-019-00991-3

Downloads

Published

2024-01-26

How to Cite

Ahmed, V. A., Ahmed, B. S., & Aziz, T. A. (2024). Cardioprotective and Hypolipidemic Effect of Cardamom Oil-Loaded Lipid Carrier Nanoparticles in a Rat Model of Streptozotocin-Induced Diabetes. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 6(1), 105–111. https://doi.org/10.54133/ajms.v6i1.498

Issue

Section

Original article

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.