The Promising Role of Flavonoids in Chronic Obstructive Pulmonary Disease
DOI:
https://doi.org/10.54133/ajms.v5i.132Keywords:
COPD, Flavonoids, Antioxidant activity, Anti-inflammatory activityAbstract
Background: Flavonoid-rich foods are beneficially associated with enhancing pulmonary function; however, the protective effects of flavonoids may have an impact on COPD through anti-inflammatory mechanisms. Chronic obstructive pulmonary disease (COPD) is a prevalent lung disease with a high death rate and multiple health problems. Recently, up to 7000 flavonoids have been identified as having anticancer, antioxidant, and anti-inflammatory properties. Various mechanisms of action of flavonoids have been implicated. Aim: This review aims to identify and appraise various flavonoids used in managing COPD and reveal their mechanisms. Methods: We searched the Web of Sciences, Google Scholar, PubMed, Scopus, and EMBASE databases from December 1975 to February 2022 by using the relevant keywords for this narrative review. Results: Many flavonoids were found to be effective in the management of COPD, such as liquiditin apioside, quercetin, baicalin, naringin, hesperidin, silymarin, and casticin. The proposed mechanisms for these flavonoids could either be attributed to antioxidant or anti-inflammatory activity. Conclusion: Flavonoids could be a promising alternative to be developed and tested for the treatment of COPD in clinical settings.
Downloads
References
Raherison C, Girodet PO. Epidemiology of COPD. Eur Respir Rev. 2009;18(114):213-221. doi: 10.1183/09059180.00003609. DOI: https://doi.org/10.1183/09059180.00003609
Nannini LJ, Poole P, Milan SJ, Kesterton A. Combined corticosteroid and long-acting beta(2)-agonist in one inhaler versus inhaled corticosteroids alone for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;2013(8):CD006826. doi: 10.1002/14651858.CD006826.pub2. DOI: https://doi.org/10.1002/14651858.CD006826.pub2
Yang Y, Jin X, Jiao X, Li J, Liang L, Ma Y, et al. Advances in pharmacological actions and mechanisms of flavonoids from traditional Chinese medicine in treating chronic obstructive pulmonary disease. Evid Based Complement Alternat Med. 2020;2020:8871105. doi: 10.1155/2020/8871105. DOI: https://doi.org/10.1155/2020/8871105
Agustí A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248-1256. doi: 10.1056/NEJMra1900475. DOI: https://doi.org/10.1056/NEJMra1900475
Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;10:261-276. doi: 10.2147/COPD.S42414. DOI: https://doi.org/10.2147/COPD.S42414
Kidder GW, Montgomery CW. Oxygenation of frog gastric mucosa in vitro. Am J Physiol. 1975;229(6):1510-1513. doi: 10.1152/ajplegacy.1975.229.6.1510. DOI: https://doi.org/10.1152/ajplegacy.1975.229.6.1510
Burkhardt R, Pankow W. The diagnosis of chronic obstructive pulmonary disease. Dtsch Arztebl Int. 2014;111(49):834-845. doi: 10.3238/arztebl.2014.0834. DOI: https://doi.org/10.3238/arztebl.2014.0834
Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144(1):266-273. doi: 10.1378/chest.12-2664. DOI: https://doi.org/10.1378/chest.12-2664
Aoshiba K, Zhou F, Tsuji T, Nagai A. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J. 2012;39(6):1368-1376. doi: 10.1183/09031936.00050211. DOI: https://doi.org/10.1183/09031936.00050211
Nyunoya T, Mebratu Y, Contreras A, Delgado M, Chand HS, Tesfaigzi Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol. 2014;50(3):471-482. doi: 10.1165/rcmb.2013-0348TR. DOI: https://doi.org/10.1165/rcmb.2013-0348TR
Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:995-1013. doi: 10.2147/COPD.S82518. DOI: https://doi.org/10.2147/COPD.S82518
Lawless MW, O'Byrne KJ, Gray SG. Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med. 2009;13(9A):2800-2821. doi: 10.1111/j.1582-4934.2009.00845.x. DOI: https://doi.org/10.1111/j.1582-4934.2009.00845.x
Beigh S, Rehman MU, Khan A, Patil BR, Makeen HA, Rasool S, et al. Therapeutic role of flavonoids in lung inflammatory disorders. Phytomed Plus. 2022;2:100221. doi: 10.1016/j.phyplu.2022.100221. DOI: https://doi.org/10.1016/j.phyplu.2022.100221
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv. 2020;38:107316. doi: 10.1016/j.biotechadv.2018.11.005. DOI: https://doi.org/10.1016/j.biotechadv.2018.11.005
Lago JH, Toledo-Arruda AC, Mernak M, Barrosa KH, Martins MA, Tibério IF, et al. Structure-activity association of flavonoids in lung diseases. Molecules. 2014;19(3):3570-3595. doi: 10.3390/molecules19033570. DOI: https://doi.org/10.3390/molecules19033570
Lixuan Z, Jingcheng D, Wenqin Y, Jianhua H, Baojun L, Xiaotao F. Baicalin attenuates inflammation by inhibiting NF-kappaB activation in cigarette smoke induced inflammatory models. Pulm Pharmacol Ther. 2010;23(5):411-419. doi: 10.1016/j.pupt.2010.05.004. DOI: https://doi.org/10.1016/j.pupt.2010.05.004
Guan Y, Li FF, Hong L, Yan XF, Tan GL, He JS, et al. Protective effects of liquiritin apioside on cigarette smoke-induced lung epithelial cell injury. Fundam Clin Pharmacol. 2012;26(4):473-483. doi: 10.1111/j.1472-8206.2011.00956.x. DOI: https://doi.org/10.1111/j.1472-8206.2011.00956.x
Han MK, Barreto TA, Martinez FJ, Comstock AT, Sajjan US. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease. BMJ Open Respir Res. 2020;7(1):e000392. doi: 10.1136/bmjresp-2018-000392. DOI: https://doi.org/10.1136/bmjresp-2018-000392
Mitani A, Azam A, Vuppusetty C, Ito K, Mercado N, Barnes PJ. Quercetin restores corticosteroid sensitivity in cells from patients with chronic obstructive pulmonary disease. Exp Lung Res. 2017;43(9-10):417-425. doi: 10.1080/01902148.2017.1393707. DOI: https://doi.org/10.1080/01902148.2017.1393707
Wang G, Mohammadtursun N, Lv Y, Zhang H, Sun J, Dong J. Baicalin exerts anti-airway inflammation and anti-remodelling effects in severe stage rat model of chronic obstructive pulmonary disease. Evid Based Complement Alternat Med. 2018;2018:7591348. doi: 10.1155/2018/7591348. DOI: https://doi.org/10.1155/2018/7591348
Li L, Bao H, Wu J, Duan X, Liu B, Sun J, et al. Baicalin is anti-inflammatory in cigarette smoke-induced inflammatory models in vivo and in vitro: A possible role for HDAC2 activity. Int Immunopharmacol. 2012;13(1):15-22. doi: 10.1016/j.intimp.2012.03.001. DOI: https://doi.org/10.1016/j.intimp.2012.03.001
Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790-2798. doi: 10.4049/jimmunol.181.4.2790. DOI: https://doi.org/10.4049/jimmunol.181.4.2790
Moon PD, Choi IH, Kim HM. Naringenin suppresses the production of thymic stromal lymphopoietin through the blockade of RIP2 and caspase-1 signal cascade in mast cells. Eur J Pharmacol. 2011;671(1-3):128-132. doi: 10.1016/j.ejphar.2011.09.163. DOI: https://doi.org/10.1016/j.ejphar.2011.09.163
Zhao M, Li C, Shen F, Wang M, Jia N, Wang C. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. Exp Ther Med. 2017;14(3):2228-2234. doi: 10.3892/etm.2017.4772. DOI: https://doi.org/10.3892/etm.2017.4772
Wang S, He N, Xing H, Sun Y, Ding J, Liu L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J Recept Signal Transduct Res. 2020;40(4):388-394. doi: 10.1080/10799893.2020.1738483. DOI: https://doi.org/10.1080/10799893.2020.1738483
Li D, Xu D, Wang T, Shen Y, Guo S, Zhang X, et al. Silymarin attenuates airway inflammation induced by cigarette smoke in mice. Inflammation. 2015;38(2):871-878. doi: 10.1007/s10753-014-9996-9. DOI: https://doi.org/10.1007/s10753-014-9996-9
Li J, Qiu C, Xu P, Lu Y, Chen R. Casticin improves respiratory dysfunction and attenuates oxidative stress and inflammation via inhibition of NF-ĸB in a chronic obstructive pulmonary disease model of chronic cigarette smoke-exposed rats. Drug Des Devel Ther. 2020;14:5019-5027. doi: 10.2147/DDDT.S277126. DOI: https://doi.org/10.2147/DDDT.S277126
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1969 Al-Rafidain Journal of Medical Sciences ( ISSN: 2789-3219 )
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).