Effects of Ertugliflozin and Lycopene on Ifosfamide-Induced Nephrotoxicity in Rats
DOI:
https://doi.org/10.54133/ajms.v9i1.2132Keywords:
Antioxidant, Cystatin-C, Ertugliflozin, KIM-1, LycopeneAbstract
Background: Nephrotoxicity induced by chemotherapy is a common side effect of many anticancer drugs. Objective: To evaluate the effect of ertugliflozin (ERTU) and lycopene (LYCO) against ifosfamide (IFO)-induced nephrotoxicity. Methods: 56 rats were divided into eight groups: negative control (NC), positive control (PC), control vehicle (CV), ERTU: ertugliflozin 20mg/kg, LYCO: lycopene 30mg/kg, IFO+ERTU, IFO+LYCO and IFO+ERTU+LYCO. On the 12th, 13th, and 14th days of the experiment, IFO 50 mg/kg was injected into PC, IFO+ERTU, IFO+LYCO, and IFO+ERTU+LYCO rats. Urine was collected for urinalysis. Blood and kidney tissue were harvested for oxidative stress, CBC-inflammatory and kidney injury biomarkers, and histopathological assessment. Results: IFO resulted in hematuria and proteinuria, elevation of cystatin C, kidney injury molecule-1 (KIM-1) in kidney tissue, and a reduction in total antioxidant capacity (TAC). Platelet-to-lymphocyte ratio (PLR), platelet-to-monocyte ratio (PMR), and hemoglobin-to-lymphocyte ratio (HLR) increased significantly with histopathological alteration in kidney tissue. IFO+ERTU and IFO+ERTU+LYCO groups showed alleviation in the hematuria, proteinuria, and cystatin C. KIM-1 was significantly reduced in IFO+ERTU and non-significantly in IFO+LYCO and its combination. IFO+ERTU, IFO+LYCO, and IFO+ERTU+LYCO groups showed elevation in TAC. In IFO-exposed animals, ERTU resulted in a significant reduction in PLR and HLR and PMR non-significantly, and LYCO+ERTU significantly reduced PLR. Conclusions: ERTU and LYCO alone and in combination alleviated kidney injury parameters and the histopathological lesions. These findings suggest that ERTU and LYCO are effective nephroprotective agents against IFO-induced nephrotoxicity. The suggested mechanisms are attributed to their antioxidant and anti-inflammatory actions for both diuretic and natriuretic properties for ERTU.
Downloads
References
Quiroz-Aldave JE, Durand-Vásquez MDC, Chávez-Vásquez FS, Rodríguez-Angulo AN, Gonzáles-Saldaña SE, Alcalde-Loyola CC, et al. Ifosfamide-induced nephrotoxicity in oncological patients. Expert Rev Anticancer Ther. 2024;24(1-2):5-14. doi: 10.1080/14737140.2023.2290196. DOI: https://doi.org/10.1080/14737140.2023.2290196
Jiang S, Zhang Z, Huang F, Yang Z, Yu F, Tang Y, et al. Protective effect of low molecular weight peptides from Solenocera crassicornis head against cyclophosphamide-induced nephrotoxicity in mice via the Keap1/Nrf2 pathway. Antioxidants. 2020;9(8):745. doi: 10.3390/antiox9080745. DOI: https://doi.org/10.3390/antiox9080745
Giraud B, Hebert G, Deroussent A, Veal GJ, Vassal G, Paci A. Oxazaphosphorines: new therapeutic strategies for an old class of drugs. Expert Opin Drug Metab Toxicol. 2010;6(8):919-938. doi: 10.1517/17425255.2010.487861. DOI: https://doi.org/10.1517/17425255.2010.487861
Aizenbud D, Aizenbud I, Reznick AZ, Avezov K. Acrolein-an α,β-unsaturated aldehyde: A review of oral cavity exposure and oral pathology effects. Rambam Maimonides Med J. 2016;7(3):e0024. doi: 10.5041/RMMJ.10251. DOI: https://doi.org/10.5041/RMMJ.10251
Ensergueix G, Karras A. Ifosphamide nephrotoxicity. Nephrol Ther. 2018;14:S125-S131. doi: 10.1016/j.nephro.2018.02.008. DOI: https://doi.org/10.1016/j.nephro.2018.02.008
Knouzy B, Dubourg L, Baverel G, Michoudet C. Targets of chloroacetaldehyde-induced nephrotoxicity. Toxicol In Vitro. 2010;24(1):99-107. doi: 10.1016/j.tiv.2009.08.026. DOI: https://doi.org/10.1016/j.tiv.2009.08.026
Ehrhardt MJ, Skinner R, Castellino SM. Renal and hepatic health after childhood cancer. Pediatr Clin North Am. 2020;67(6):1203-1217. doi: 10.1016/j.pcl.2020.07.011. DOI: https://doi.org/10.1016/j.pcl.2020.07.011
Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci. 2015;143(2):242-255. doi: 10.1093/toxsci/kfu233. DOI: https://doi.org/10.1093/toxsci/kfu233
Mhaidat NM, Ali RM, Shotar AM, Alkaraki AK. Antioxidant activity of simvastatin prevents ifosfamide-induced nephrotoxicity. Pak J Pharm Sci. 2016;29(2):433-437.
Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262-275.e9. doi: 10.1016/j.jash.2014.01.007. DOI: https://doi.org/10.1016/j.jash.2014.01.007
Abdelrahman AM, Al Suleimani Y, Shalaby A, Ashique M, Manoj P, Nemmar A, et al. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(1):45-53. doi: 10.1007/s00210-018-1564-7. DOI: https://doi.org/10.1007/s00210-018-1564-7
Tang L, Wu Y, Tian M, Sjöström CD, Johansson U, Peng XR, et al. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab. 2017;313(5):E563-E576. doi: 10.1152/ajpendo.00086.2017. DOI: https://doi.org/10.1152/ajpendo.00086.2017
Mahmood N, Rashid B, Abdulla S, Marouf B, Hamaamin K, Othman H. Effects of zofenopril and thymoquinone in cyclophosphamide-induced urotoxicity and nephrotoxicity in rats; The value of their anti-inflammatory and antioxidant properties. J Inflamm Res. 2025;18:3657-3676. doi: 10.2147/JIR.S500375. DOI: https://doi.org/10.2147/JIR.S500375
Shabani M, Bayrami D, Moghadam AA, Jamali Z, Salimi A. Pretreatment of ellagic acid protects ifosfamide-induced acute nephrotoxicity in rat kidneys: A mitochondrial, histopathological and oxidative stress approaches. Toxicol Rep. 2023;10:441-447. doi: 10.1016/j.toxrep.2023.04.005. DOI: https://doi.org/10.1016/j.toxrep.2023.04.005
Palabiyik SS, Erkekoglu P, Zeybek ND, Kizilgun M, Baydar DE, Sahin G, et al. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. Exp Toxicol Pathol. 2013;65(6):853-861. doi: 10.1016/j.etp.2012.12.004. DOI: https://doi.org/10.1016/j.etp.2012.12.004
Hussien YA, Abdalkadim H, Mahbuba W, Hadi NR, Jamil DA, Al-Aubaidy HA. The Nephroprotective effect of lycopene on renal ischemic reperfusion injury: A mouse model. Indian J Clin Biochem. 2020;35(4):474-481. doi: 10.1007/s12291-019-00848-7. DOI: https://doi.org/10.1007/s12291-019-00848-7
Al-Malki AL. Synergestic effect of lycopene and melatonin against the genesis of oxidative stress induced by cyclophosphamide in rats. Toxicol Ind Health. 2014;30(6):570-575. doi: 10.1177/0748233712459916. DOI: https://doi.org/10.1177/0748233712459916
Dobrek L, Nalik-Iwaniak K, Arent Z. The effectiveness of N-acetylcysteine in alleviating kidney dysfunction in ifosfamide-treated rats. Open Urol Nephrol J. 2020;13(1):21-31. doi: 10.2174/1874303X02013010021. DOI: https://doi.org/10.2174/1874303X02013010021
Kareem RT, Abass MK. A Potential anti-inflammatory effect of ertugliflozin in animal model. South Asian Res J Pharm Sci. 2024;6(03):84-88. doi: 10.36346/sarjps.2024.v06i03.006. DOI: https://doi.org/10.36346/sarjps.2024.v06i03.006
Augusti PR, Conterato GMM, Somacal S, Einsfeld L, Ramos AT, Hosomi FYM, et al. Effect of lycopene on nephrotoxicity induced by mercuric chloride in rats. Basic Clin Pharmacol Toxicol. 2007;100(6):398-402. doi: 10.1111/j.1742-7843.2007.00067.x. DOI: https://doi.org/10.1111/j.1742-7843.2007.00067.x
Contemporary Practice in Clinical Chemistry - 4th Edition | Elsevier Shop. Accessed March 15, 2024. Available at: https://shop.elsevier.com/books/contemporary-practice-in-clinical-chemistry/clarke/978-0-12-815499-1
Merwid-Ląd A, Ziółkowski P, Szandruk-Bender M, Matuszewska A, Szeląg A, Trocha M. Effect of a low dose of carvedilol on cyclophosphamide-induced urinary toxicity in rats—A comparison with mesna. Pharmaceuticals. 2021;14(12):1237. doi: 10.3390/ph14121237. DOI: https://doi.org/10.3390/ph14121237
Zhang J, Brown RP, Shaw M, Vaidya VS, Zhou Y, Espandiari P, et al. Immunolocalization of Kim-1, RPA-1, and RPA-2 in kidney of gentamicin-, mercury-, or chromium-treated rats: Relationship to renal distributions of iNOS and nitrotyrosine. Toxicol Pathol. 2008;36(3):397-409. doi: 10.1177/0192623308315832. DOI: https://doi.org/10.1177/0192623308315832
Hassan SMA, Saeed AK, Rahim OO, Mahmood SAF. Alleviation of cisplatin-induced hepatotoxicity and nephrotoxicity by L-carnitine. Iran J Basic Med Sci. 2022;25(7):897-903. doi: 10.22038/IJBMS.2022.65427.14395.
Anuhya V, Mohanbabu Vittalrao A, Kamalkishore MK, Kumar Singh BM, Soundarrajan G. Evaluation of nephroprotective effect of ubiquinol on ifosfamide induced nephrotoxicity in albino Wistar rats. Res J Pharm Technol. 2024:2309-2314. doi: 10.52711/0974-360X.2024.00362. DOI: https://doi.org/10.52711/0974-360X.2024.00362
Adikwu E, Bokolo B, Okoroafor DO. Lycopene abrogates ifosfamide-induced Fanconi syndrome in albino rats. J Med Sci. 2021;41(3):116-122. doi: 10.4103/jmedsci.jmedsci_84_19. DOI: https://doi.org/10.4103/jmedsci.jmedsci_84_19
Pratama K. Weight loss effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors in patients with obesity without diabetes: a Systematic review. Acta Endocrinol Buchar. 2022;18(2):216-224. doi: 10.4183/aeb.2022.216. DOI: https://doi.org/10.4183/aeb.2022.216
Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin–angiotensin–aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46. doi: 10.1186/s12933-019-0852-y. DOI: https://doi.org/10.1186/s12933-019-0852-y
Sinha F, Federlein A, Biesold A, Schwarzfischer M, Krieger K, Schweda F, et al. Empagliflozin increases kidney weight due to increased cell size in the proximal tubule S3 segment and the collecting duct. Front Pharmacol. 2023;14:1118358. doi: 10.3389/fphar.2023.1118358. DOI: https://doi.org/10.3389/fphar.2023.1118358
Sohail MA, Hassanein M, Rincon-Choles H. Ifosfamide-induced nephrogenic diabetes insipidus responsive to supraphysiologic doses of intravenous desmopressin. Clin Nephrol Case Stud. 2021;9(1):87-92. doi: 10.5414/CNCS110589. DOI: https://doi.org/10.5414/CNCS110589
Patel S, Hickman A, Frederich R, Johnson S, Huyck S, Mancuso JP, et al. Safety of ertugliflozin in patients with type 2 diabetes mellitus: Pooled analysis of seven phase 3 randomized controlled trials. Diabetes Ther. 2020;11(6):1347-1367. doi: 10.1007/s13300-020-00803-3. DOI: https://doi.org/10.1007/s13300-020-00803-3
Patel P, Patel S, Patel V. Anti-lithiatic effect of lycopene in chemically induced nephrolithiasis in rats. Asian J Pharm Clin Res. 2022:172-176. doi: 10.22159/ajpcr.2022.v15i7.44969. DOI: https://doi.org/10.22159/ajpcr.2022.v15i7.44969
Bailey CJ, Day C, Bellary S. Renal protection with SGLT2 inhibitors: Effects in acute and chronic kidney disease. Curr Diab Rep. 2022;22(1):39-52. doi: 10.1007/s11892-021-01442-z. DOI: https://doi.org/10.1007/s11892-021-01442-z
Cherney DZ, Kanbay M, Lovshin JA. Renal physiology of glucose handling and therapeutic implications. Nephrol Dial Transplant. 2020;35(Supplement_1):i3-i12. doi: 10.1093/ndt/gfz230. DOI: https://doi.org/10.1093/ndt/gfz230
Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94(1):26-39. doi: 10.1016/j.kint.2017.12.027. DOI: https://doi.org/10.1016/j.kint.2017.12.027
Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, et al. Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis. 2020;11(5):390. doi:10.1038/s41419-020-2544-7. DOI: https://doi.org/10.1038/s41419-020-2544-7
Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62(7):1154-1166. doi: 10.1007/s00125-019-4859-4. DOI: https://doi.org/10.1007/s00125-019-4859-4
Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587-597. doi: 10.1161/CIRCULATIONAHA.113.005081. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.005081
Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci. 2011;32(2):63-71. doi: 10.1016/j.tips.2010.11.011. DOI: https://doi.org/10.1016/j.tips.2010.11.011
Cersosimo A, Drera A, Adamo M, Metra M, Vizzardi E. Exploring the cardiorenal benefits of SGLT2i: A comprehensive review. Kidney Dial. 2024;4(4):184-202. doi: 10.3390/kidneydial4040016. DOI: https://doi.org/10.3390/kidneydial4040016
Mahmood NN, Mahmood MN, Marouf BH. Analysis of complete blood count-derived inflammatory biomarkers in patients underwent total knee arthroplasty: A retrospective study. Al-Rafidain J Med Sci. 2025;8(1):129-136. doi: 10.54133/ajms.v8i1.1711. DOI: https://doi.org/10.54133/ajms.v8i1.1711
Mahmoodnia L, Mohammadi K, Masumi R. Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol. 2017;6(3):144-149. doi: 10.15171/jnp.2017.25. DOI: https://doi.org/10.15171/jnp.2017.25
Oguz E, Kocarslan S, Tabur S, Sezen H, Yilmaz Z, Aksoy N. Effects of lycopene alone or combined with melatonin on methotrexate-induced nephrotoxicity in Rats. Asian Pac J Cancer Prev. 2015;16(14):6061-6066. doi:10.7314/APJCP.2015.16.14.6061 DOI: https://doi.org/10.7314/APJCP.2015.16.14.6061
Delanaye P, Scheen AJ. The diuretic effects of SGLT2 inhibitors: A comprehensive review of their specificities and their role in renal protection. Diabetes Metab. 2021;47(6):101285. doi: 10.1016/j.diabet.2021.101285. DOI: https://doi.org/10.1016/j.diabet.2021.101285
Liu H, Sridhar VS, Lovblom LE, Lytvyn Y, Burger D, Burns K, et al. Markers of kidney injury, inflammation, and fibrosis associated with ertugliflozin in patients with CKD and diabetes. Kidney Int Rep. 2021;6(8):2095-2104. doi: 10.1016/j.ekir.2021.05.022. DOI: https://doi.org/10.1016/j.ekir.2021.05.022
Albadrani GM, Altyar AE, Kensara OA, Haridy MAM, Sayed AA, Mohammedsaleh ZM, et al. Lycopene alleviates 5-fluorouracil-induced nephrotoxicity by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail. 2024;46(2):2423843. doi: 10.1080/0886022X.2024.2423843. DOI: https://doi.org/10.1080/0886022X.2024.2423843
Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W, et al. Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep. 2021;11(1):13979. doi: 10.1038/s41598-021-93196-7. DOI: https://doi.org/10.1038/s41598-021-93196-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).



