The Free Radical Scavenging and Cytotoxic Properties of Ardisia crenata and Peliosanthes teta in the 4T1 Breast Cancer Cell Line

Authors

  • Yassir Mohammed Ali Al-Zubaidi Research and Development Directorate, Ministry of Higher Education and Scientific Research, Baghdad, Iraq; Faculty of Pharmacy, Al-Shaab University, Baghdad, Iraq; Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia https://orcid.org/0000-0002-9509-1560
  • Arifah Abdul Kadir Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia https://orcid.org/0000-0002-6132-2877
  • Zainul Amiruddin Zakaria Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia https://orcid.org/0000-0001-5525-7821

DOI:

https://doi.org/10.54133/ajms.v7i2.1373

Keywords:

Antioxidant activity, Anticancer activity, Ardisia crenata, Kinetic reaction, Peliosanthes teta, Total antioxidant capacity

Abstract

Background: Ardisia crenata (A. crenata) and Peliosanthes teta Andrew (P. teta) are popular medicinal plants in Malaysia that are claimed to have several biological effects. Objective: To assess the anticancer and radical-scavenging properties of A. crenata and P. teta methanolic extracts. Methods: TPC was quantified using the Folin-Ciocalteu test; free radical scavenging was evaluated using the 2,2'-azino-bis3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays; and cytotoxic activity was assessed using the MTT assay. Results: In both ABTS and DPPH systems, A. crenata exhibits much higher radical scavenging activity than ascorbic acid. P. teta showed less significant antioxidant activity. Furthermore, A. crenata methanolic extracts demonstrated free radical scavenging properties in a concentration-dependent manner, quenching ABTS and DPPH radicals with no lag phase observed in the experiments. Furthermore, A. crenata had a strong cytotoxic effect on the breast cancer 4T1 cell line but had no suppression of cell viability in the 3T3 normal fibroblast cell line. Interestingly, the TPC of A. crenata was significantly higher than that of P. teta methanolic extracts. Conclusions: A. crenata showed antioxidant and anticancer action against breast cancer 4T1 cells, indicating that it could be a valuable source for future pharmacological and medical research.

Downloads

Download data is not yet available.

References

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:1–13. doi: 10.1155/2017/8416763. DOI: https://doi.org/10.1155/2017/8416763

Choucair H, Rahman MK, Umashankar B, Al-Zubaidi Y, Bourget K, Chen Y, et al. The aryl-ureido fatty acid CTU activates endoplasmic reticulum stress and PERK/NOXA-mediated apoptosis in tumor cells by a dual mitochondrial-targeting mechanism. Cancer Lett. 2022;526:131–141. doi: 10.1016/j.canlet.2021.11.022. DOI: https://doi.org/10.1016/j.canlet.2021.11.022

Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int J Dermatol. 2004;43(5):326–335. doi: 10.1111/j.1365-4632.2004.02222.x. DOI: https://doi.org/10.1111/j.1365-4632.2004.02222.x

Jimoh TO. Enzymes inhibitory and radical scavenging potentials of two selected tropical vegetable ( Moringa oleifera and Telfairia occidentalis ) leaves relevant to type 2 diabetes mellitus. Rev Bras Farmacogn. 2018;28(1):73–79. doi: 10.1016/j.bjp.2017.04.003. DOI: https://doi.org/10.1016/j.bjp.2017.04.003

V. Prakash R. Oxidative stress in health and disease. Biomedicines. 2023;11(11):2925–2925. doi: 10.3390/biomedicines11112925. DOI: https://doi.org/10.3390/biomedicines11112925

Ju S, Liu P, Tan L, Tan Y, Li X, He B, et al. Hydroxysafflor yellow a regulates inflammation and oxidative stress by suppressing the HIF-1α/JAK/STAT3 signaling pathway to attenuate osteoarthritis. Rev Bras Farmacogn. 2023;33(5):1022–1030. doi: 10.1007/s43450-023-00429-z. DOI: https://doi.org/10.1007/s43450-023-00429-z

Cheng k Y, Gao Y, Yu J, Peng L. Protective effects of paeoniflorin against inflammation and oxidative stress in rats with gestational diabetes mellitus via inhibiting the RhoA/ROCK signaling pathway. Rev Bras Farmacogn. 2024;34:536–552. doi: 10.1007/s43450-023-00505-4. DOI: https://doi.org/10.1007/s43450-023-00505-4

Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev. 1994;52(8):253–265. doi: 10.1111/j.1753-4887.1994.tb01453.x. DOI: https://doi.org/10.1111/j.1753-4887.1994.tb01453.x

Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–162. doi: 10.1021/jf010172v. DOI: https://doi.org/10.1152/physrev.1994.74.1.139

Tsifhiwa R, Mavunda RD, Steenkamp PA, Piater LA, Dubery IA, Ndhlala AR, et al. Gamma radiation treatment activates glucomoringin synthesis in Moringa oleifera. Rev Bras Farmacogn. 2017;27(5):569–575. doi: 10.1016/j.bjp.2017.05.012. DOI: https://doi.org/10.1016/j.bjp.2017.05.012

MatÉs JM, Pérez-Gómez C, Núñez I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603. doi: 10.1016/s0009-9120(99)00075-2. DOI: https://doi.org/10.1016/S0009-9120(99)00075-2

Hama Salh HJ, Aziz TA, Ahmed ZA, Aziz DF. Free radical scavenging activity of boron and vitamin c in nitrite-induced hemoglobin oxidation model: In vitro and in vivo studies. Al-Rafidain J Med Sci. 2023;5:157–165. doi: 10.54133/ajms.v5i.202. DOI: https://doi.org/10.54133/ajms.v5i.202

Hashim MY, Hassan AF. Analyzing the potential antioxidative effects of omega-369 in preventing acetaminophen-induced liver damage. Al-Rafidain J Med Sci. 2023 (3)4:73–78. doi: 10.54133/ajms.v4i.126. DOI: https://doi.org/10.54133/ajms.v4i.126

Hassan DS, Hasary HJ. Effects of folic acid and vitamin B12 supplementation on the efficacy and toxicity of pemetrexed in the management of advanced stage non-squamous non-small cell lung cancer. Al-Rafidain J Med Sci. 2022;3:1–5. doi: 10.54133/ajms.v3i.71. DOI: https://doi.org/10.54133/ajms.v3i.71

Liu D, Wang N, Zhang X, Yao X. Three new triterpenoid saponins from Ardisia crenata. Helv Chim Acta. 2011;94(4):693–702. doi: 10.1002/hlca.201000285. DOI: https://doi.org/10.1002/hlca.201000285

Podolak I, Żuromska‐Witek B, Grabowska K, Żebrowska S, Galanty A, Urszula H. Comparative quantitative study of Ardisiacrispin a in extracts from Ardisia crenata sims varieties and their cytotoxic activities. Chem Biodivers. 2021. doi: 10.1002/cbdv.202100335. DOI: https://doi.org/10.1002/cbdv.202100335

Jahan N, Hossain MA, Mahmud N, Jatan Tongchongya, Hasan MN, Rahmatullah M. Medicinal plants used by a Tonchongya tribal community at Taknatala village in Rangamati District, Bangladesh. J Chem Pharm Res. 2015;7(6):128–132.

Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46(10):4113–4117. doi: 10.1021/jf9801973. DOI: https://doi.org/10.1021/jf9801973

Denise M, Fernandes DA, Nunes FC, Yanna CFT, Rolim YM, Macaúbas C, et al. Phytochemical study of Waltheria viscosissima and evaluation of its larvicidal activity against Aedes aegypti. Rev Bras Farmacogn. 2019;29(5):582–590. doi: 10.1016/j.bjp.2019.05.008. DOI: https://doi.org/10.1016/j.bjp.2019.05.008

Re R, Pellegrini N, Proteggente A, Ananth P, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–1237. doi: 10.1016/s0891-5849(98)00315-3. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

She GM, Hu JB, Zhang YJ, Yang CR. Phenolic constituents from Rhopalocnemis phalloides with DPPH radical scavenging activity. Pharm Biol. 2010;48(1):116–119. doi: 10.3109/13880200903032757. DOI: https://doi.org/10.3109/13880200903032757

Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25–30. doi: 10.1016/s0023-6438(95)80008-5. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Yu L. Free radical scavenging properties of conjugated linoleic acids. J Agric Food Chem. 2001;49(7):3452–6345. doi: 10.1021/jf010172v. DOI: https://doi.org/10.1021/jf010172v

Winston GW, Regoli F, Dugas AJ, Fong JH, Blanchard KA. A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic Biol Med. 1998;24(3):480–493. doi: 10.1016/s0891-5849(97)00277-3. DOI: https://doi.org/10.1016/S0891-5849(97)00277-3

Yassir MA, Arifah AK, Ahmad Z, Halimatun Y, Zainul AZ. Free radical scavenging activity of conjugated linoleic acid as single or mixed isomers. Pharm Biol. 2011;50(6):712–719. doi: 10.3109/13880209.2011.621714. DOI: https://doi.org/10.3109/13880209.2011.621714

Al-Zubaidi Y, Chen Y, Md. Khalilur R, Bala U, Choucair H, Bourget K, et al. PTU, a novel ureido-fatty acid, inhibits MDA-MB-231 cell invasion and dissemination by modulating Wnt5a secretion and cytoskeletal signaling. Biochem Pharmacol .2021;192:114726–114726. doi: 10.1016/j.bcp.2021.114726. DOI: https://doi.org/10.1016/j.bcp.2021.114726

Tam S, Al-Zubaidi Y, Rahman MK, Bourget K, Zhou F, Murray M. The ixabepilone and vandetanib combination shows synergistic activity in docetaxel-resistant MDA-MB-231 breast cancer cells. Pharmacol Rep. 2022;74(5):998-1010. doi: 10.1007/s43440-022-00396-7. DOI: https://doi.org/10.1007/s43440-022-00396-7

Md Khalilur R, Al-Zubaidi Y, Bourget K, Chen Y, Tam S, Zhou F, et al. Preclinical evaluation of ixabepilone in combination with vegf receptor and parp inhibitors in taxane-sensitive and taxane-resistant MDA-MB-231 breast cancer cells. J Pharm Sci. 2022;111(8):2180–2190. doi: 10.1016/j.xphs.2022.06.009. DOI: https://doi.org/10.1016/j.xphs.2022.06.009

Aldawood AS, Al-Ezzy RM. Cytotoxicity of l-methioninase purified from clinical isolates of pseudomonas species in cancer cell lines. Al-Rafidain J Med Sci. 2024;6(1):46–49. doi: 10.54133/ajms.v6i1.405. DOI: https://doi.org/10.54133/ajms.v6i1.405

Yen GC, Duh PD, Tsai CL. Relationship between antioxidant activity and maturity of peanut hulls. J Agric Food Chem. 1993;41(1):67–70. doi: 10.1021/jf00025a015. DOI: https://doi.org/10.1021/jf00025a015

Mei B, Xie H, Xing H, Kong D, Pan X, Li Y, et al. Changes of phenolic acids and antioxidant activities in diploid and tetraploid echinacea purpurea at different growth stages. Rev Bras Farmacogn. 2020;30(4):510–518. doi: 10.1007/s43450-020-00069-7. DOI: https://doi.org/10.1007/s43450-020-00069-7

Liu L, Luo X, Zou M, Zhang L, Yin M, Zhang X. Macroporous resin-assisted enrichment and isolation of antioxidant and cytotoxic phenolics from penthorum chinense. Rev Bras Farmacogn. 2021;31(6):854–858. doi: 10.1007/s43450-021-00222-w. DOI: https://doi.org/10.1007/s43450-021-00222-w

Majed B, Yaseen M, Salaheldin M. Cytotoxic potential of phenolic glycosides from stipagrostis plumosa. Rev Bras Farmacogn. 2021;31(6):842–847. doi: 10.1007/s43450-021-00206-w. DOI: https://doi.org/10.1007/s43450-021-00206-w

Briand AR, Hernández-Rojas AC, Pereda-Miranda R, Fragoso-Serrano M. Cytotoxicity of salvigenin from asterohyptis stellulata in combination with clinical drugs against colorectal cancer. Rev Bras Farmacogn. 2024;34:1172–1176. doi: 10.1007/s43450-024-00549-0. DOI: https://doi.org/10.1007/s43450-024-00549-0

Cao S, Wan C, Yu Y, Zhou S, Liu W, Tian S. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Pharmacogn Mag. 2011;7(25):40–40. doi: 10.4103/0973-1296.75900. DOI: https://doi.org/10.4103/0973-1296.75900

Luis AT, Belén HP, Ángel RS. Spectroscopical analysis of Andean plant species with anti-inflammatory, antioxidant, and antibacterial activities. Rev Bras Farmacogn. 2023;34(1):135–153. doi: 10.1007/s43450-023-00469-5. DOI: https://doi.org/10.1007/s43450-023-00469-5

Yamina B, Belguidoum K, Faiza M, Habiba AG. Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights. Struct Chem. 2021;32(5):1907–1923. doi: 10.1007/s11224-021-01763-5. DOI: https://doi.org/10.1007/s11224-021-01763-5

Hassanpour S, Doroudi A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J Phytomedicine. 2023;13(4):354–376. doi: 10.22038/AJP.2023.21774.

Ammar AT, Arif AM. Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi J Biol Sci. 2019;26(3):600–604. doi: 10.1016/j.sjbs.2018.07.012. DOI: https://doi.org/10.1016/j.sjbs.2018.07.012

Kroll A, Pillukat MH, Hahn D, Jürgen S. Current in vitro methods in nanoparticle risk assessment: Limitations and challenges. Eur J Pharm Biopharm. 2009;72(2):370–477. doi: 10.1016/j.ejpb.2008.08.009. DOI: https://doi.org/10.1016/j.ejpb.2008.08.009

Al-Zubaidi Y, Pazderka C, Nooshin K, Md Khalilur R, Choucair H, Bala U, et al. Aryl-urea fatty acids that activate the p38 MAP kinase and down-regulate multiple cyclins decrease the viability of MDA-MB-231 breast cancer cells. Eur J Pharm Sci. 2019;129:87–98. doi: 10.1016/j.ejps.2018.12.015. DOI: https://doi.org/10.1016/j.ejps.2018.12.015

Downloads

Published

2024-11-25

How to Cite

Al-Zubaidi, Y. M. A., Abdul Kadir, A., & Zakaria, Z. A. (2024). The Free Radical Scavenging and Cytotoxic Properties of Ardisia crenata and Peliosanthes teta in the 4T1 Breast Cancer Cell Line. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 7(2), 101–108. https://doi.org/10.54133/ajms.v7i2.1373

Issue

Section

Original article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.