The Impact of CYP 2C9 rs1799853 and rs1057910 Polymorphism on Plasma Losartan Metabolic Ratio in a Sample of Iraqi Hypertensive Patients
DOI:
https://doi.org/10.54133/ajms.v7i1(Special).985Keywords:
CYP2C9 polymorphism, Hypertension, Losartan, Metabolic ratioAbstract
Background: The challenge associated with interindividual diversity in CYP2C9 enzyme activity is primarily related to genetic variations among individuals. Polymorphisms in the CYP2C9 gene can lead to different enzyme activity, affecting how individuals metabolize drugs. The understanding of interindividual diversity in CYP2C9 enzyme activity has implications for personalized medicine. Objective: To examine the impact of CYP2C9 gene polymorphisms (rs1799853 and rs1057910) on the losartan metabolism in Iraqi hypertensive patients. Methods: This prospective interventional study was conducted on a sample of hypertension patients from Babylon governorate, Iraq. All patients received 100 mg of losartan once daily. After 4 weeks, blood samples were obtained for genetic analysis and measuring losartan and its carboxylic acid (LCA) metabolite levels. The plasma losartan-to-LCA ratio is used as an indirect determinant of CYP2C9 activity within CYP2C9 SNP genotypes. Results: Two major allelic polymorphisms, CYP2C9 rs1799853 (T allele 15.5%) on exon 3 and rs1057910 (C allele 8.5%) on exon 7, have been identified among the patients. Plasma losartan/E3174 metabolic ratio was significantly higher in patients with a CT genotype of rs1799853 SNP (1.65) than in patients with a CC wild-type genotype (1.03). The losartan/E3174 metabolic ratio in heterozygous mutant AC genotypes of rs1057910 (1.18) was also higher than in those with wild-type AA genotypes (1.15); however, these differences are not statistically significant. Conclusions: The rs1799853 SNP variant, but not the rs1057910 SNP variant, significantly impacts CYP2C9 metabolic activity. The plasma losartan/E3174 metabolic ratio appears to be a practical and reliable measure for CYP2C9 activity.
Downloads
References
Song JC, White CM. Pharmacologic, pharmacokinetic, and therapeutic differences among angiotensin II receptor antagonists. Pharmacotherapy: J Hum Pharmacol Drug Ther. 2000;20(2):130-139. doi: 10.1592/phco.20.3.130.34788.
Yasar U, Babaoglu MO, Bozkurt A. Disposition of a CYP2C9 phenotyping agent, losartan, is not influenced by the common 3435C> T variation of the drug transporter gene ABCB1 (MDR1). Basic Clin Pharmacol Toxicol. 2008;103(2):176-179. doi: 10.1111/j.1742-7843.2008.00283.x.
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: functional and clinical considerations. J Personalized Med. 2017;8(1):1. doi: 10.3390/jpm8010001.
Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22(23):12808. doi: 10.3390/ijms222312808.
Al Omari A, Murry DJ. Pharmacogenetics of the cytochrome P450 enzyme system: review of current knowledge and clinical significance. J Pharm Pract. 2007;20(3):206-218. doi: 10.1177/08971900073048.
Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB, et al. Interindividual variability in cytochrome P450–mediated drug metabolism. Drug Metab Dispos. 2016;44(3):343-351. doi: 10.1124/dmd.115.067900.
Sezutsu H, Le Goff G, Feyereisen R. Origins of P450 diversity. Philosoph Transact Royal Soc B Biol Sci. 2013;368(1612):20120428. doi: 10.1098/rstb.2012.0428.
Lam YW, Scott SR, (Eds.), Pharmacogenomics: challenges and opportunities in therapeutic implementation, (2nd Ed.), Elsevier; 2019.
Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology. 2010;278(2):165-188. doi: 10.1016/j.tox.2009.08.013.
PharmVar Standards. Available at: https://www.pharmvar.org/genes
Wei L, Locuson CW, Tracy TS. Polymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity. Mol Pharmacol. 2007;72(5):1280-1288. doi: 10.1124/mol.107.036178.
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339.
Miniprep-system-low-elution-volume-with-high-yield/Updated. Available at: http://www.promega.com/resources/pubhub/reliaprepblood-gdna
Yang L, Guo T, Xia DY, Zhao LS. Pharmacokinetics of losartan and its active carboxylic acid metabolite E‐3174 in five ethnic populations of China. J Clin Pharm Ther. 2012;37(2):226-231. doi: 10.1111/j.1365-2710.2011.01279.x.
Daneshtalab N, Lewanczuk RZ, Jamali F. High-performance liquid chromatographic analysis of angiotensin II receptor antagonist valsartan using a liquid extraction method. J Chromatogr B. 2002;766(2):345-349. doi: 10.1016/s0378-4347(01)00507-2.
Kvitne KE, Krogstad V, Wegler C, Johnson LK, Kringen MK, Hovd MH, et al. Short‐and long‐term effects of body weight, calorie restriction and gastric bypass on CYP1A2, CYP2C19 and CYP2C9 activity. Br J Clin Pharmacol. 2022;88(9):4121-4133. doi: 10.1111/bcp.15349.
Fekete F, Mangó K, Déri M, Incze E, Minus A, Monostory K. Impact of genetic and non-genetic factors on hepatic CYP2C9 expression and activity in Hungarian subjects. Sci Rep. 2021;11(1):17081. doi: 10.1038/s41598-021-96590-3.
Park YA, Song YB, Yee J, Yoon HY, Gwak HS. Influence of CYP2C9 genetic polymorphisms on the pharmacokinetics of losartan and its active metabolite E-3174: a systematic review and meta-analysis. J Personalized Med. 2021;11(7):617. doi: 10.3390/jpm11070617.
Hatta FH, Teh LK, Helldén A, Hellgren KE, Roh HK, Salleh MZ, et al . Search for the molecular basis of ultra-rapid CYP2C9-catalysed metabolism: relationship between SNP IVS8-109A> T and the losartan metabolism phenotype in Swedes. Eur J Clin Pharmacol. 2012;68:1033-1042. doi: 10.1007/s00228-012-1210-0.
Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front Genetics. 2018;9:507. doi: 10.3389/fgene.2018.00507.
Yasar U, Lundgren S, Eliasson E, Bennet A, Wiman B, De Faire U, et al. Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun. 2002;299(1):25-28. doi: 10.1016/s0006-291x(02)02592-5.
Speed WC, Kang SP, Tuck DP, Harris LN, Kidd KK. Global variation in CYP2C8–CYP2C9 functional haplotypes. Pharmacogenomics J. 2009;9(4):283-290. doi:10.1038/tpj.2009.10.
Kirchheiner J, Brockmöller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005;77(1):1-6. doi: 10.1016/j.clpt.2004.08.009.
Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics Genom. 2000;10(2):95-104. doi: 10.1097/00008571-200003000-00001.
Babaoglu MO, Yasar U, Sandberg M, Eliasson E, Dahl ML, Kayaalp SO, et al. CYP2C9 genetic variants and losartan oxidation in a Turkish population. Eur J Clin Pharmacol. 2004;60:337-342. doi: 10.1007/s00228-004-0785-5.
Dorado P, Beltrán LJ, Machin E, Penas-LLedo EM, Terán E, LLerena A, et al. Losartan hydroxylation phenotype in an Ecuadorian population: influence of CYP2C9 genetic polymorphism, habits and gender. Pharmacogenomics. 2012;13(15):1711-1717. doi: 10.2217/pgs.12.160.
Sandberg M, Johansson I, Christensen M, Rane A, Eliasson E. The impact of CYP2C9 genetics and oral contraceptives on cytochrome P450 2C9 phenotype. Drug Metab Dispos. 2004;32(5):484-489. doi: 10.1124/dmd.32.5.484.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).