Estimation of Tenascin-C Levels in Iraqi Patients with Diabetic Nephropathy
DOI:
https://doi.org/10.54133/ajms.v5i1S.273Keywords:
Diabetic nephropathy, Extracellular matrix, Tenascin-C, Type 2 diabetesAbstract
Background: Diabetic nephropathy (DN) is a highly malignant chronic microvascular complication of diabetes that is the principal cause of end-stage renal disease (ESRD). Objective: The purpose of this study is to ascertain the correlation between diabetic nephropathy and Tenascin-C (TNC), in addition to quantifying TNC levels at different phases of this pathogenesis. Methods: Thirty healthy subjects and ninety T2DM patients participated in this cross-sectional study. Patients were divided into three groups according to the albumin-creatinine ratio (ACR): normal albuminuria, microalbuminuria, and macroalbuminuria. By employing an ELISA reagent, the serum TNC concentration was ascertained. Results: Significant disparities were observed in the concentrations of TNC and FBG, TC, TGs, HDL, LDL, and VLDL between individuals with diabetic nephropathy and those who were in good health. There were also substantial differences between the levels of TNC and kidney function in patients with various disease stages. Furthermore, a noteworthy positive correlation was identified between TNC and blood concentrations of ACR, urea, and creatinine. Conclusions: Based on the available evidence, it can be deduced that TNC may serve as the most precise predictor of diabetic nephropathy and may be associated with its progression.
Downloads
References
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157(2019):107843. doi: 10.1016/j.diabres.2019.107843. DOI: https://doi.org/10.1016/j.diabres.2019.107843
Atlas D. International diabetes federation (IDF), 2015.
Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419-1429. doi: 10.1056/NEJMoa1610187. DOI: https://doi.org/10.1056/NEJMoa1610187
Oost LJ, van der Heijden AAWA, Vermeulen EA, Bos C, Elders PJM, Slieker RC, et al. Serum magnesium is inversely associated with heart failure, atrial fibrillation, and microvascular complications in type 2 diabetes. Diabetes Care. 2021;44(8):1757-1765. doi: 10.2337/dc21-0236. DOI: https://doi.org/10.2337/dc21-0236
Aikaeli F, Njim T, Gissing S, Moyo F, Alam U, Mfinanga SG, et al. Prevalence of microvascular and macrovascular complications of diabetes in newly diagnosed type 2 diabetes in low-and-middle-income countries: A systematic review and meta-analysis. PLoS Glob Public Health. 2022;2(6):1-21. doi: 10.1371/journal.pgph.0000599. DOI: https://doi.org/10.1371/journal.pgph.0000599
Saputro SA, Pattanaprateep O, Pattanateepapon A, Karmacharya S, Thakkinstian A. Prognostic models of diabetic microvascular complications: a systematic review and meta-analysis. Syst Rev. 2021;10(288):1-11. doi: 10.1186/s13643-021-01841-z. DOI: https://doi.org/10.1186/s13643-021-01841-z
Jitraknatee J, Ruengorn C, Nochaiwong S. Prevalence and risk factors of chronic kidney disease among type 2 diabetes patients: A cross-sectional study in primary care practice. Sci Rep. 2020;1(10):6205. doi: 10.1038/s41598-020-63443-4. DOI: https://doi.org/10.1038/s41598-020-63443-4
Farhan LO, Dawood A, Abed BA. Comparison study between adipsin levels in sera of Iraqi patients with diabetes and neuropathy. Baghdad Sci J. 2023;20(3):726-733. doi: 10.21123/bsj.2022.7408. DOI: https://doi.org/10.21123/bsj.2022.7408
Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3-16. doi: 10.1007/s00125-018-4711-2. DOI: https://doi.org/10.1007/s00125-018-4711-2
Rao V, Rao ALBV, Hong S, Candasamy M, Kumar S. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):754-762. doi: 10.1016/j.dsx.2018.11.054. DOI: https://doi.org/10.1016/j.dsx.2018.11.054
Gnudi L, Long DA, (Eds.), Diabetic Nephropathy: Methods and Protocols, MIMB, volume 2067, Springer; 2020. Available from: http://www.springer.com/series/7651 DOI: https://doi.org/10.1007/978-1-4939-9841-8
Tucker RP, Degen M. Revisiting the tenascins: Exploitable as cancer targets? Front Oncol. 2022;12:908247. doi: 10.3389/fonc.2022.908247. DOI: https://doi.org/10.3389/fonc.2022.908247
Aubert A, Mercier-Gouy P, Aguero S, Berthier L, Liot S, Prigent L, et al. Latent TGF-β activation is a hallmark of the Tenascin family. Front Immunol. 2021;12:613438. doi: 10.3389/fimmu.2021.613438. DOI: https://doi.org/10.3389/fimmu.2021.613438
Li M, Wu M, Zhu H, Hua Y, Ma Z, Yao J, et al. Serum tenascin-C and alarin levels are associated with cardiovascular diseases in type 2 diabetes mellitus. Int J Endocrinol. 2022;2022:2009724. doi: 10.1155/2022/2009724. DOI: https://doi.org/10.1155/2022/2009724
Draicchio F, Behrends V, Tillin NA, Hurren NM, Sylow L, Mackenzie R. Involvement of the extracellular matrix and integrin signaling proteins in skeletal muscle glucose uptake. J Physiol. 2022;600(20):4393-4408. doi: 10.1113/JP283039. DOI: https://doi.org/10.1113/JP283039
Zhou Y, Wang Y, Kang J, Wang Q, First T. Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop. World J Diabetes. 2021;12(1):19-46. doi: 10.4239/wjd.v12.i1.19. DOI: https://doi.org/10.4239/wjd.v12.i1.19
Kiss A, Nadasy GL, Fees A, Arnold Z, Aykac I, Dostal C, et al. Alterations in coronary resistance artery network geometry in diabetes and the role of tenascin C. Rev. Cardiovasc. Med. 2023;24(1):6. doi: 10.31083/j.rcm2401006. DOI: https://doi.org/10.31083/j.rcm2401006
Sharma A, Arora D, (Eds.), Role of Inflammation in Diabetic Retinopathy. In: Diabetic Eye Disease. 2021. p. 1–24. DOI: https://doi.org/10.5772/intechopen.100175
Singh R, Mugale MN. Global recurrence rates in diabetic nephropathy: A pathological systematic review. United J Qual Valid. 2021;2(1):1-8.
Ansar MM, Shahrokhirad R, Lebady MK. Risk factors of microalbuminuria and macroalbuminuria in type 2 diabetic patients in north of Iran - Rasht. Nephrourol Mon. 2017;9(1):e40031. doi: 10.5812/numonthly.40031. DOI: https://doi.org/10.5812/numonthly.40031
Sosale B, Sosale AR, Chandrashekara S, Panchagnula R, Dey S, Prasannakumar KM. Effect of vitamin D supplementation on reduction of cardiometabolic risk in patients with type 2 diabetes mellitus and dyslipidemia. Int J Diabetes Dev Ctries. 2018;38(2):221-227. doi: 10.1007/s13410-017-0584-z. DOI: https://doi.org/10.1007/s13410-017-0584-z
Asbaghi O, Fouladvand F, Moradi S, Ashtary-Larky D, Choghakhori R, Abbasnezhad A. Effect of green tea extract on lipid profile in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev. 2020;14(4):293-301. doi: 10.1016/j.dsx.2020.03.018. DOI: https://doi.org/10.1016/j.dsx.2020.03.018
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1:1-23. doi: 10.1038/nrdp.2015.19. DOI: https://doi.org/10.1038/nrdp.2015.19
Dixit AK, Dey R, Suresh A, Chaudhuri S, Panda AK, Mitra A, et al. The prevalence of dyslipidemia in patients with diabetes mellitus of ayurveda Hospital. J Diabetes Metab Disord. 2014;13(1):58. doi: 10.1186/2251-6581-13-58. DOI: https://doi.org/10.1186/2251-6581-13-58
Yang H, Young D, Gao J, Yuan Y, Shen M, Zhang Y, et al. Are blood lipids associated with microvascular complications among type 2 diabetes mellitus patients? A cross-sectional study in Shanghai, China. Lipids Health Dis. 2019;18(1):18. doi: 10.1186/s12944-019-0970-2. DOI: https://doi.org/10.1186/s12944-019-0970-2
Nezami N, Ghorbanihaghjo A, Argani H, Safa J, Rashtchizadeh N. Lovastatin enhances paraoxonase enzyme activity and quells low-density lipoprotein susceptibility to oxidation in type 2 diabetic nephropathy. Clin Biochem. 2011;44(2-3):165-170. doi: 10.1016/j.clinbiochem.2010.10.006. DOI: https://doi.org/10.1016/j.clinbiochem.2010.10.006
Kanagala P, Arnold JR, Khan JN, Singh A, Gulsin GS, Chan DCS, et al. Plasma tenascin-C: A prognostic biomarker in heart failure with preserved ejection fraction. Biomarkers. 2020;25(7):556-565. doi: 10.1080/1354750X.2020.1810319. DOI: https://doi.org/10.1080/1354750X.2020.1810319
Yokokawa T, Sugano Y, Nakayama T, Nagai T, Matsuyama T, Ohta-Ogo K, et al. Significance of myocardial Tenascin-C expression in left ventricular remodeling and long-term outcome in patients with dilated cardiomyopathy. Eur J of Heart Fail. 2016;18(4):375-385. doi: 10.1002/ejhf.464. DOI: https://doi.org/10.1002/ejhf.464
Xie Q, Zang M, Mao X, Xu M, Liu S, Shang D, et al. Matrix protein Tenascin-C promotes kidney fibrosis via STAT3 activation in response to tubular injury. Cell Death Dis. 2022;13(12):1044. doi: 10.1038/s41419-022-05496-z. DOI: https://doi.org/10.1038/s41419-022-05496-z
Liabeuf S, Barreto DV, Kretschmer A, Barreto FC, Renard C, Andrejak M, et al. High circulating levels of large splice variants of Tenascin-C is associated with mortality and cardiovascular disease in chronic kidney disease patients. Atherosclerosis. 2011;215(2011):116-124. doi: 10.1016/j.atherosclerosis.2010.11.038. DOI: https://doi.org/10.1016/j.atherosclerosis.2010.11.038

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).