Assessment of Bone Mineral Density Using Dual-Energy X-ray Absorptiometry in Children and Adolescents with Type 1 Diabetes Mellitus

Authors

  • Farah Jameel Hameed Central Child Teaching Hospital of Pediatrics, Baghdad, Iraq
  • Wasnaa Hadi Abdullah Department of Pediatrics, College of Medicine, Mustansiriyah University, Baghdad, Iraq https://orcid.org/0000-0003-1549-3824

DOI:

https://doi.org/10.54133/ajms.v8i2.1934

Keywords:

Bone mineral density, Children, DEXA, Glycemic control, Obesity, Type 1 diabetes

Abstract

Background: Diabetes negatively impacts the skeleton. The mechanisms underlying diabetic-related osteopathy are poorly understood and presumed to be multifactorial. Objective: to assess the bone mineral density (BMD) in children and adolescents with type 1 diabetes mellitus (T1DM) using dual-energy X-ray absorptiometry (DXA) bone scanning and to figure out the correlation between the different risk factors and the changes in BMD in those children. Methods: A cross-sectional study was conducted on children and adolescents (ages 6–16) with T1DM and diabetes duration of ≥4 years. Data collected included age, sex, diabetes duration, insulin dose, height, weight, and BMI. Puberty was assessed. HbA1c, serum calcium, and 25-hydroxyvitamin D levels were measured. All patients underwent DEXA scanning of the lumbar spine (L1–L4) and left femur. Results: The study included 50 patients with a mean age of 11.9±2.15 years. Most (84%) were older than 10 years, and 68% were female. Over half (52%) used an insulin dose of ≥1 unit/kg/day, and 84% had HbA1c levels ≥7.5%. 78% had osteoporosis. BMD changes are not significantly associated with age, sex, DM duration, insulin dose, or pubertal status. However, 81% of patients with HbA1c ≥ 7.5% had osteoporosis. Higher weight and BMI are significantly linked to better BMD. Conclusions: The DEXA scan results indicate reduced BMD in children and adolescents with T1DM. Poor glycemic control increases the risk of decreased BMD, while higher weight and BMI positively influence bone density

Downloads

Download data is not yet available.

References

Popoviciu MS, Kaka N, Sethi Y, Patel N, Chopra H, Cavalu S. Type 1 diabetes mellitus and autoimmune diseases: A critical review of the association and the application of personalized medicine. J Pers Med. 2023;13(3). doi: 10.3390/jpm13030422. DOI: https://doi.org/10.3390/jpm13030422

Weber DR. Diabetes mellitus in children. In: Kleigman R, Stanton B, St Geme J, Schor N, (Eds.), Nelson Textbook of Pediatrics, (22nd edn.), Philadelphia: Elsevier; 2024.p.3517-3538.

Loxton P, Narayan K, Munns CF, Craig ME. Bone mineral density and type 1 diabetes in children and adolescents: A meta-analysis. Diabetes Care. 2021;44(8):1898–1905. doi: 10.2337/dc20-3128. DOI: https://doi.org/10.2337/dc20-3128

Vora KA, Munns CF, Donaghue KC, Craig ME, Briody J, Benitez-Aguirre P. Childhood type 1 diabetes is associated with abnormal bone development. Pediatr Diabetes. 2022;23(6):773–782. doi: 10.1111/pedi.13367. DOI: https://doi.org/10.1111/pedi.13367

Halper-Stromberg E, Gallo T, Champakanath A, Taki I, Rewers M, Snell-Bergeon J, et al. Bone mineral density across the lifespan in patients with type 1 diabetes. J Clin Endocrinol Metab. 2020;105(3):746–753. doi: 10.1210/clinem/dgz153. DOI: https://doi.org/10.1210/clinem/dgz153

Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, et al. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol. 2022;10(3):207–220. doi: 10.1016/S2213-8587(21)00347-8. DOI: https://doi.org/10.1016/S2213-8587(21)00347-8

Abdullah WH, Alabedi RF, Mussa RF. Risk factors of limited joint mobility in type 1 diabetic adolescents: a two-center experience in Iraq. Med J Indones. 2023;31(4):239–244. doi: 10.13181/mji.oa.236382. DOI: https://doi.org/10.13181/mji.oa.236382

Szulc P. Impact of bone fracture on muscle strength and physical performance-Narrative review. Curr Osteoporos Rep. 2020;18(6):633–645. doi: 10.1007/s11914-020-00623-1. DOI: https://doi.org/10.1007/s11914-020-00623-1

Binkovitz LA, Henwood MJ. Pediatric DXA: technique and interpretation. Pediatr Radiol. 2007; 37(1):21–31. doi: 10.1007/s00247-006-0153-y. DOI: https://doi.org/10.1007/s00247-006-0153-y

Zhu Q, Xu J, Zhou M, Lian X, Shi J. Association between type 1 diabetes mellitus and reduced bone mineral density in children: a meta-analysis. Osteoporos Int. 2021;32(6):1143–1152. doi: 10.1007/s00198-020-05715-3. DOI: https://doi.org/10.1007/s00198-020-05715-3

Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):429–435. doi: 10.1097/MED.0b013e3282f1cba3. DOI: https://doi.org/10.1097/MED.0b013e3282f1cba3

Dhaon P, Shah VN. Type 1 diabetes and osteoporosis: A review of literature. Indian J Endocrinol Metab. 2014;18(2):159–165. doi: 10.4103/2230-8210.129105. DOI: https://doi.org/10.4103/2230-8210.129105

Mitchell DM, Caksa S, Joseph T, Bouxsein ML, Misra M. Elevated HbA1c is associated with altered cortical and trabecular microarchitecture in girls with type 1 diabetes. J Clin Endocrinol Metab. 2020;105(4):e1648-1656. doi: 10.1210/clinem/dgz221. DOI: https://doi.org/10.1210/clinem/dgz221

American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15-S33. doi: 10.2337/dc21-S002. DOI: https://doi.org/10.2337/dc21-S002

Wang Y, Chen H. Use of percentiles and Z-scores in anthropometry. In: Preedy VR, (Editor), Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. Springer Science & Business Media; 2012. p. 29-46. doi: 10.1007/978-1-4419-1788-1_2. DOI: https://doi.org/10.1007/978-1-4419-1788-1_2

Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23. doi: 10.1136/adc.45.239.13. DOI: https://doi.org/10.1136/adc.45.239.13

Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303. doi: 10.1136/adc.44.235.291. DOI: https://doi.org/10.1136/adc.44.235.291

American Diabetes Association. Standards of medical care in diabetes - 2022. Alexandria, Va.: American Diabetes Association; 2022. Diabetes Care. 2022;45 supplement 1). doi: 10.2337/dc22-S002. DOI: https://doi.org/10.2337/dc22-Sint

Children and Adolescents: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S148-S164. doi: 10.2337/dc19-S013. DOI: https://doi.org/10.2337/dc19-S013

Royal College of Physicians (UK). Chronic Kidney Disease: National Clinical Guideline for Early Identification and Management in Adults in Primary and Secondary Care. London; 2008. doi: 10.1186/s13054-016-1208-6. DOI: https://doi.org/10.1186/s13054-016-1208-6

Butler G, Kirk J. Calcium, vitamin D, and bone disorders. In Paediatric Endocrinology and Diabetes, (2nd Edition), Oxford University Press 2020. Ashford Colour Press Ltd, 2020 Mar 10, p 422.

Kumar RA, Kumar CGD, Sahoo J. Evaluation of bone mineral density in children with type 1 diabetes: A cross-sectional case–control study. J Pediatr Endocrinol Diabetes. 2022;2(1):9–13. doi: 10.25259/JPED_1_2022. DOI: https://doi.org/10.25259/JPED_1_2022

Hussein SA, Ibrahim BA, Abdullah WH. Nutritional status of children and adolescents with Type 1 Diabetes Mellitus in Baghdad: a case-control study. J Med Life. 2023;16(2):254–260. doi: 10.25122/jml-2022-0233. DOI: https://doi.org/10.25122/jml-2022-0233

Ibrahim BA, Hussein SA, Abdullah WH. Cognitive function in children with type I diabetes. Wiad Lek. 2023;76(5 pt 1):944–950. doi: 10.36740/WLek202305108. DOI: https://doi.org/10.36740/WLek202305108

Salih FT, Abdullah WH, Ibrahim BA, Ayoub NI. Assessment of growth status in children and adolescents with type 1 diabetes mellitus in Baghdad: a case-control study. J Pak Med Assoc. 2024;74(10 (Supple-8)):S48-S51. doi: 10.47391/JPMA-BAGH-16-12. DOI: https://doi.org/10.47391/JPMA-BAGH-16-12

Joshi A, Varthakavi P, Chadha M, Bhagwat N. A study of bone mineral density and its determinants in type 1 diabetes mellitus. J Osteoporos. 2013;2013:397814. doi: 10.1155/2013/397814. DOI: https://doi.org/10.1155/2013/397814

Mosso C, Hodgson MI, Ortiz T, Reyes ML. Bone mineral density in young Chilean patients with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2016;29(6):731–736. doi: 10.1515/jpem-2015-0097. DOI: https://doi.org/10.1515/jpem-2015-0097

Sayarifard F, Safarirad M, Rabbani A, Sayarifard A, Ziaee V, Setoodeh A, et al. Status of bone mineral density in children with type 1 diabetes mellitus and its related factors. Iran J Pediatr. 2017;27(4). doi: 10.5812/ijp.9062. DOI: https://doi.org/10.5812/ijp.9062

Clements MA, Lind M, Raman S, Patton SR, Lipska KJ, Fridlington AG, et al. Age at diagnosis predicts deterioration in glycaemic control among children and adolescents with type 1 diabetes. BMJ Open Diabetes Res Care. 2014;2(1):e000039. doi: 10.1136/bmjdrc-2014-000039. DOI: https://doi.org/10.1136/bmjdrc-2014-000039

Santiprabhob J, Charoentawornpanich P, Khemaprasit K, Manpayak T, Kiattisakthavee P, Pipatsathian A, et al. Effect of gender, diabetes duration, inflammatory cytokines, and vitamin D level on bone mineral density among Thai children and adolescents with type 1 diabetes. Bone. 2021;153:116112. doi: 10.1016/j.bone.2021.116112. DOI: https://doi.org/10.1016/j.bone.2021.116112

Wierzbicka E, Swiercz A, Pludowski P, Jaworski M, Szalecki M. Skeletal status, body composition, and glycaemic control in adolescents with type 1 diabetes mellitus. J Diabetes Res. 2018;2018:8121634. doi: 10.1155/2018/8121634. DOI: https://doi.org/10.1155/2018/8121634

Pascual J, Argente J, Lopez MB, Muñoz M, Martinez G, Vazquez MA, et al. Bone mineral density in children and adolescents with diabetes mellitus type 1 of recent onset. Calcif Tissue Int. 1998;62(1):31–45. doi: 10.1007/s002239900390. DOI: https://doi.org/10.1007/s002239900390

Elhakeem A, Frysz M, Tilling K, Tobias JH, Lawlor DA. Association between age at puberty and bone accrual from 10 to 25 years of age. JAMA Netw Open. 2019;2(8):e198918. doi: 10.1001/jamanetworkopen.2019.8918. DOI: https://doi.org/10.1001/jamanetworkopen.2019.8918

Murray CE, Coleman CM. Impact of diabetes mellitus on bone health. Int J Mol Sci. 2019;20(19). doi: 10.3390/ijms20194873. DOI: https://doi.org/10.3390/ijms20194873

Shieh A, Greendale GA, Cauley JA, Karvonen-Gutierrez CA, Karlamangla AS. Prediabetes and fracture risk among midlife women in the study of women’s health across the nation. JAMA Netw Open. 2023;6(5):e2314835. doi: 10.1001/jamanetworkopen.2023.14835. DOI: https://doi.org/10.1001/jamanetworkopen.2023.14835

Al-Gburi AJJ. Left ventricular diastolic reserve by exercise stress echocardiography in prediabetes. Tzu Chi Med J. 2023;35(2):188–192. doi: 10.4103/tcmj.tcmj_151_22. DOI: https://doi.org/10.4103/tcmj.tcmj_151_22

Leão AAP, Fritz CK, Dias MRMG, Carvalho JAR, Mascarenhas LPG, Cat MNL, et al. Bone mass and dietary intake in children and adolescents with type 1 diabetes mellitus. J Diabetes Complications. 2020;34(6):107573. doi: 10.1016/j.jdiacomp.2020.107573. DOI: https://doi.org/10.1016/j.jdiacomp.2020.107573

Bilha SC, Leustean L, Preda C, Branisteanu DD, Mihalache L, Ungureanu MC. Bone mineral density predictors in long-standing type 1 and type 2 diabetes mellitus. BMC Endocr Disord. 2021;21(1):156. doi: 10.1186/s12902-021-00815-5. DOI: https://doi.org/10.1186/s12902-021-00815-5

Roh JG, Yoon JS, Park KJ, Lim JS, Lee HS, Hwang JS. Evaluation of bone mineral status in prepuberal children with newly diagnosed type 1 diabetes. Ann Pediatr Endocrinol Metab. 2018;23(3):136–140. doi: 10.6065/apem.2018.23.3.136. DOI: https://doi.org/10.6065/apem.2018.23.3.136

Wongdee K, Krishnamra N, Charoenphandhu N. Derangement of calcium metabolism in diabetes mellitus: negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption. J Physiol Sci. 2017;67(1):71–81. doi: 10.1007/s12576-016-0487-7. DOI: https://doi.org/10.1007/s12576-016-0487-7

Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, et al. The interplay between bone and glucose metabolism. Front Endocrinol (Lausanne). 2020;11:122. doi: 10.3389/fendo.2020.00122. DOI: https://doi.org/10.3389/fendo.2020.00122

Khadilkar A, Oza C, Antani M, Shah N, Lohiya N, Khadilkar V, et al. Effect of calcium and vitamin D supplementation (dairy vs. pharmacological) on bone health of underprivileged Indian children and youth with type-1 diabetes: A randomized controlled trial. J Clin Densitom. 2024;27(2):101468. doi: 10.1016/j.jocd.2024.101468. DOI: https://doi.org/10.1016/j.jocd.2024.101468

Gil-Díaz MC, Raynor J, O’Brien KO, Schwartz GJ, Weber DR. Systematic review: associations of calcium intake, vitamin D intake, and physical activity with skeletal outcomes in people with type 1 diabetes mellitus. Acta Diabetol. 2019;56(10):1091-102. doi: 10.1007/s00592-019-01334-5. DOI: https://doi.org/10.1007/s00592-019-01334-5

Sharma P, Sharma RK, Gaur K. Understanding the impact of diabetes on bone health: A clinical review. Metabol Open. 2024;24:100330. doi: 10.1016/j.metop.2024.100330. DOI: https://doi.org/10.1016/j.metop.2024.100330

Han CS, Kim HK, Kim S. Effects of adolescents’ lifestyle habits and body composition on bone mineral density. Int J Environ Res Public Health. 2021;18(11). doi: 10.3390/ijerph18116170. DOI: https://doi.org/10.3390/ijerph18116170

Fadl AM, Hassan ZA, Basyouni AA, Mohamed DS, Emara IA. 25-hydroxyvitamin D status and bone mineral density in Egyptian patients with type 1 diabetes. Sci J Al-Azhar Med Fac Girls. 2021;5(1):122–127. doi: 10.4103/sjamf.sjamf_91_20. DOI: https://doi.org/10.4103/sjamf.sjamf_91_20

Luo J, Wang Q, Liu W, Liao H, Qing W, Zhang M, et al. Computed tomography provides a “one-stop-shop” targeted analysis for coronary artery calcification and osteoporosis: a review. Front Endocrinol (Lausanne). 2025;16:1356831. doi: 10.3389/fendo.2025.1356831. DOI: https://doi.org/10.3389/fendo.2025.1356831

Al-Gburi AJ, Al-Obaidi SR. Coronary calcification in Iraqi middle-aged women with previous preeclampsia: A cohort study. IHA. 2022;23(4):88–96.

Lloyd JT, Alley DE, Hawkes WG, Hochberg MC, Waldstein SR, Orwig DL. Body mass index is positively associated with bone mineral density in US older adults. Arch Osteoporos. 2014;9:175. doi: 10.1007/s11657-014-0175-2. DOI: https://doi.org/10.1007/s11657-014-0175-2

Seo YG, Kim Y, Lim H, Kang MJ, Park KH. Relationship between bone mineral density and body composition according to obesity status in children. Endocr Pract. 2021;27(10):983–991. doi: 10.1016/j.eprac.2021.06.006. DOI: https://doi.org/10.1016/j.eprac.2021.06.006

Downloads

Published

2025-06-12

How to Cite

Hameed, F. J., & Abdullah, W. H. (2025). Assessment of Bone Mineral Density Using Dual-Energy X-ray Absorptiometry in Children and Adolescents with Type 1 Diabetes Mellitus. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 8(2), 188–194. https://doi.org/10.54133/ajms.v8i2.1934

Issue

Section

Original article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.