The Significance of Measuring Human Beta Defensin-2 in Patients with Diabetic Foot Ulcer

Authors

  • Hawraa Ibrahim Abdul Kareem Department of Clinical Laboratories, College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq https://orcid.org/0009-0004-1376-3055
  • Suhad Hadi Mohammed Department of Clinical Laboratories, College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq https://orcid.org/0000-0002-7706-477X

DOI:

https://doi.org/10.54133/ajms.v6i2.762

Keywords:

HBD-2, DFU, Diabetic Foot Infection, Ulcer Grade

Abstract

Background: Approximately one out of every four diabetic patients will acquire a diabetic foot ulcer (DFU) in their lifetime. Human beta-defensin (HBD) promotes wound healing. Objective: To find the correlation between HBD-2 and ulcer grade, diabetic foot infection, and the type of bacterial isolates recovered from bacteriological culture. Methods: We included forty-nine patients with DFU and obtained blood samples and wound swabs from each participant between October 2023 and December 2023. We measure HBA1c using the ARCHITECT c4000 system, and HBD-2 using the ELISA technique. The classification of DFU was done based on Wagner’s method. Swabs from foot ulcers are used for isolation and preliminary identification of bacteria based on standard guidelines. The VITEK® 2 system confirmed the diagnosis. Results: The patients' mean age was 57.31 years, and the male/female ratio was 1.57. Grade 3 was the most common type (57.1%). We observed the highest significant level of HBD-2 in grade one, non-infected DFU patients, and ulcers infected with gram-positive bacteria. Patients infected with Staphylococcus aureus showed the highest HBD-2 level according to the type of isolate, while patients infected with Proteus mirabilis showed the lowest level. Conclusions: HBD-2 levels might reflect the impaired or dysregulated immune response in patients with type 2 diabetes mellitus (T2DM) and have a negative impact on wound healing. The type of bacteria influenced this level, with Staphylococcus aureus infections reporting the highest level.

Downloads

Download data is not yet available.

References

Upamali S, Rathnayake S. Perspectives of older people with uncontrolled type 2 diabetes mellitus towards medication adherence: A qualitative study. PLoS One. 2023;18(8 August):1–18. doi: 10.1371/journal.pone.0289834.

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-2781. doi: 10.1016/j.diabres.2018.02.023

Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020;162. doi: 10.1016/j.diabres.2020.108072.

Martins-Mendes D, Monteiro-Soares M, Boyko EJ, Ribeiro M, Barata P, Lima J, et al. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. J Diabetes Complications. 2014;28(5):632-638. doi: 10.1016/j.jdiacomp.2014.04.011.

Laakso M. Biomarkers for type 2 diabetes. Mol Metab. 2019;27:S139-146. doi: 10.1016/j.molmet.2019.06.016.

Zhao Y, Zhang J, Ren T, Han S. Dyslipidemia and blood indices in the prognosis of diabetic foot ulcers (DFU). Ann Clin Nutr. 2023;6(1):1026.

Bekele BB. The prevalence of macro and microvascular complications of DM among patients in Ethiopia 1990–2017: Article review. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):672-677. doi: 10.1016/j.dsx.2018.11.046.

Brownrigg JRW, Davey J, Holt PJ, Davis WA, Thompson MM, Ray KK, et al. The association of ulceration of the foot with cardiovascular and all-Cause mortality in patients with diabetes: A meta-analysis. Diabetologia. 2012;55(11):2906-2912. doi: 10.1007/s00125-012-2673-3.

Li M. Guidelines and standards for comprehensive clinical diagnosis and interventional treatment for diabetic foot in China (Issue 7.0). J Interv Med. 2021;4(3):117-129. doi: 10.1016/j.jimed.2021.07.003.

Monteiro-Soares M, Russell D, Boyko EJ, Jeffcoate W, Mills JL, Morbach S, et al. Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36(S1):1-8. doi: 10.1002/dmrr.3273.

Singh S, Jajoo S, Shukla S, Acharya S. Educating patients of diabetes mellitus for diabetic foot care. J Family Med Prim Care. 2020;9(1):367-373. doi: 10.4103/jfmpc.jfmpc_861_19.

Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60. doi: 10.1038/s41586-019-1797-8.

Fang WC, Lan CCE. The epidermal keratinocyte as a therapeutic target for management of diabetic wounds. Int J Mol Sci. 2023;24(5). doi: 10.3390/ijms24054290.

Kumar NP, Moideen K, Viswanathan V, Sivakumar S, Menon PA, Kornfeld H, et al. Heightened circulating levels of antimicrobial peptides in tuberculosis — Diabetes comorbidity and reversal upon treatment. PLoS One. 2017;12(9):1-14. doi: 10.1371/journal.pone.0184753.

Liang W, Diana J. The dual role of antimicrobial peptides in autoimmunity. Front Immunol. 2020;11(September):1-9. doi: 10.3389/fimmu.2020.02077.

Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog. 2021;155:104930. doi: 10.1016/j.micpath.2021.104930.

Sanapalli BKR, Yele V, Kalidhindi RSR, Singh SK, Gulati M, Karri VVSR. Human beta defensins may be a multifactorial modulator in the management of diabetic wound. Wound Repair Regen. 2020;28(3):416-421. doi: 10.1111/wrr.12785.

Han SH, Bishop BM, van Hoek ML. Antimicrobial activity of human beta-defensins and induction by Francisella. Biochem Biophys Res Commun. 2008;371(4):670-674. doi: 10.1016/j.bbrc.2008.04.092.

Li G, Wang Q, Feng J, Wang J, Wang Y, Huang X, et al. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother. 2022;155:113694. doi: 10.1016/j.biopha.2022.113694.

Tola A, Regassa LD, Ayele Y. Prevalence and associated factors of diabetic foot ulcers among type 2 diabetic patients attending chronic follow-up clinics at governmental hospitals of Harari Region, Eastern Ethiopia: A 5-year (2013–2017) retrospective study. SAGE Open Med. 2021;9. doi: 10.1177/2050312120987385.

Anderson SG, Shoo H, Saluja S, Anderson CD, Khan A, Livingston M, et al. Social deprivation modifies the association between incident foot ulceration and mortality in type 1 and type 2 diabetes: a longitudinal study of a primary-care cohort. Diabetologia. 2018;61(4):959-967. doi: 10.1007/s00125-017-4522-x.

Mineoka Y, Ishii M, Hashimoto Y, Yamashita A, Nakamura N, Fukui M. Platelet to lymphocyte ratio correlates with diabetic foot risk and foot ulcer in patients with type 2 diabetes. Endocr J. 2019;66(10):905-913. doi: 10.1507/endocrj.EJ18-0477.

Malepati S, Vakamudi P, Kandati J, Satish S. Bacteriological study of diabetic foot ulcer according to Wagner’s classification: a one-year study. Int Surg J. 2017;5(1):98. doi: 10.18203/2349-2902.isj20175534.

Qadir AN, Mahmoud BM, Mahwi TO, Al-Attar ADMR, Mahmood SO. Prevalence of microorganisms and antibiotic sensitivity among patients with diabetic foot ulcer in Sulaimani City, Iraq. Hosp Pract Res. 2020;5(2):56-63. doi: 10.34172/hpr.2020.11.

Singh AK, Yeola M, Singh N, Damke S. A study on diabetic foot ulcers in Central rural India to formulate empiric antimicrobial therapy. J Fam Med Prim Care. 2020;9(8):4216-422. doi: 10.4103/jfmpc.jfmpc_700_20.

Younis BB, Shahid A, Arshad R, Khurshid S, Ahmad M, Yousaf H. Frequency of foot ulcers in people with type 2 diabetes, presenting to specialist diabetes clinic at a Tertiary Care Hospital, Lahore, Pakistan. BMC Endocr Disord. 2018;18(1):53. doi: 10.1186/s12902-018-0282-y.

Marsya V, Novita I, Mahmuda N. Correlations between age and hypertension on diabetic foot ulcer. Indonesian J Med. 2023;08:179-185. doi: 10.26911/theijmed.2023.08.02.07.

Hamilton EJ, Davis WA, Siru R, Baba M, Norman PE, Davis TME. Temporal trends in incident hospitalization for diabetes-related foot ulcer in type 2 diabetes: The fremantle diabetes study. Diabetes Care. 2021;44(3):722-730. doi: 10.2337/dc20-1743.

Hadi P, Rampal S, Neela VK, Cheema MS, Sarawan Singh SS, Kee Tan E, et al. Distribution of Causative Microorganisms in Diabetic Foot Infections: A Ten-Year Retrospective Study in a Tertiary Care Hospital in Central Malaysia. Antibiotics. 2023;12(4).

Jasem NM, Abdul-Razaq AS. Evalution of biomarkers in Iraqi patients with diabetes mellitus type 2. Egypt J Hosp Med. 2023;90(2):3062-3066. doi: 10.21608/EJHM.2023.288392.

Martínez-De Jesús FR, Ramos-De La Medina A, Remes-Troche JM, Armstrong DG, Wu SC, Lázaro Martínez JL, et al. Efficacy and safety of neutral pH superoxidised solution in severe diabetic foot infections. Int Wound J. 2007;4(4):353-362. doi: 10.1111/j.1742-481X.2007.00363.x.

Hozzein WN, Badr G, Badr BM, Allam A, Ghamdi AA, Al-Wadaan MA, et al. Bee venom improves diabetic wound healing by protecting functional macrophages from apoptosis and enhancing Nrf2, Ang-1 and Tie-2 signaling. Mol Immunol. 2018;103(April):322-335. doi: 10.1016/j.molimm.2018.10.016/

Badr G. Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: The critical role of β-Defensin-1, -2 and -3. Lipids Health Dis. 2013;12(1):1-11. doi: 10.1186/1476-511X-12-46.

Petkovic M, Vangmouritzen M, Mojsoska B, Jenssen H. Immunomodulatory properties of host defence peptides in skin wound healing. Biomolecules. 2021;11(7):952. doi: 10.3390/biom11070952.

Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815-819. doi: 10.1038/nm.3887.

Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. Transl Res. 2021;236:109-116. doi: 10.1016/j.trsl.2021.05.006.

Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H. The human β-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol. 2005;175(3):1776-1784. doi: 10.4049/jimmunol.175.3.1776.

Chen X, Niyonsoba F, Ushio H, Hara M, Yokoi H, Matsumoto K, et al. Antimicrobial peptides human β-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol. 2007;37(2):434-444. doi: 10.1002/eji.200636379.

Gursoy UK, Könönen E, Luukkonen N, Uitto V. Human neutrophil defensins and their effect on epithelial cells. J Periodontol. 2013;84(1):126-133. doi: 10.1902/jop.2012.120017.

Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, et al. Linear analogues of human β-defensin 3: Concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. ChemBioChem. 2008;9(6):964-973. doi: 10.1002/cbic.200700560.

Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev. 2021;179:114008. doi: 10.1016/j.addr.2021.114008.

Cardot-Martin E, Casalegno JS, Badiou C, Dauwalder O, Keller D, Prévost G, et al. α-Defensins partially protect human neutrophils against Panton-Valentine leukocidin produced by Staphylococcus aureus. Lett Appl Microbiol. 2015;61(2):158-164. doi: 10.1111/lam.12438.

Linn O, Menges B, Lammert F, Weber SN, Krawczyk M. Altered expression of antimicrobial peptides in the upper gastrointestinal tract of patients with diabetes mellitus. Nutrients. 2023;15(3):1-12. doi: 10.3390/nu15030754.

Lan CC, Wu CS, Huang SM, Kuo HY, Wu IH, Liang CW, Chen GS. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br J Dermatol. 2012;166(6):1221-1229. doi: 10.1111/j.1365-2133.2012.10847.x.

Bolatchiev A, Baturin V, Bazikov I, Maltsev A, Kunitsina E. Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo. Fundam Clin Pharmacol. 2020;34(1):102-108. doi: 10.1111/fcp.12499.

Mathew B, Nagaraj R. Variations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing. PLoS One. 2017;12(4):1-16. doi: 10.1371/journal.pone.0175858.

Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev. 2017;41(3):323-342. doi: 10.1093/femsre/fux012.

Downloads

Published

2024-05-12

How to Cite

Abdul Kareem, H. I., & Mohammed, S. H. (2024). The Significance of Measuring Human Beta Defensin-2 in Patients with Diabetic Foot Ulcer. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 6(2), 70–75. https://doi.org/10.54133/ajms.v6i2.762

Issue

Section

Original article

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.