The Significance of Measuring Human Beta Defensin-2 in Patients with Diabetic Foot Ulcer
DOI:
https://doi.org/10.54133/ajms.v6i2.762Keywords:
HBD-2, DFU, Diabetic Foot Infection, Ulcer GradeAbstract
Background: Approximately one out of every four diabetic patients will acquire a diabetic foot ulcer (DFU) in their lifetime. Human beta-defensin (HBD) promotes wound healing. Objective: To find the correlation between HBD-2 and ulcer grade, diabetic foot infection, and the type of bacterial isolates recovered from bacteriological culture. Methods: We included forty-nine patients with DFU and obtained blood samples and wound swabs from each participant between October 2023 and December 2023. We measure HBA1c using the ARCHITECT c4000 system, and HBD-2 using the ELISA technique. The classification of DFU was done based on Wagner’s method. Swabs from foot ulcers are used for isolation and preliminary identification of bacteria based on standard guidelines. The VITEK® 2 system confirmed the diagnosis. Results: The patients' mean age was 57.31 years, and the male/female ratio was 1.57. Grade 3 was the most common type (57.1%). We observed the highest significant level of HBD-2 in grade one, non-infected DFU patients, and ulcers infected with gram-positive bacteria. Patients infected with Staphylococcus aureus showed the highest HBD-2 level according to the type of isolate, while patients infected with Proteus mirabilis showed the lowest level. Conclusions: HBD-2 levels might reflect the impaired or dysregulated immune response in patients with type 2 diabetes mellitus (T2DM) and have a negative impact on wound healing. The type of bacteria influenced this level, with Staphylococcus aureus infections reporting the highest level.
Downloads
References
Upamali S, Rathnayake S. Perspectives of older people with uncontrolled type 2 diabetes mellitus towards medication adherence: A qualitative study. PLoS One. 2023;18(8 August):1–18. doi: 10.1371/journal.pone.0289834. DOI: https://doi.org/10.1371/journal.pone.0289834
Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-2781. doi: 10.1016/j.diabres.2018.02.023 DOI: https://doi.org/10.1016/j.diabres.2018.02.023
Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020;162. doi: 10.1016/j.diabres.2020.108072. DOI: https://doi.org/10.1016/j.diabres.2020.108072
Martins-Mendes D, Monteiro-Soares M, Boyko EJ, Ribeiro M, Barata P, Lima J, et al. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. J Diabetes Complications. 2014;28(5):632-638. doi: 10.1016/j.jdiacomp.2014.04.011. DOI: https://doi.org/10.1016/j.jdiacomp.2014.04.011
Laakso M. Biomarkers for type 2 diabetes. Mol Metab. 2019;27:S139-146. doi: 10.1016/j.molmet.2019.06.016. DOI: https://doi.org/10.1016/j.molmet.2019.06.016
Zhao Y, Zhang J, Ren T, Han S. Dyslipidemia and blood indices in the prognosis of diabetic foot ulcers (DFU). Ann Clin Nutr. 2023;6(1):1026.
Bekele BB. The prevalence of macro and microvascular complications of DM among patients in Ethiopia 1990–2017: Article review. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):672-677. doi: 10.1016/j.dsx.2018.11.046. DOI: https://doi.org/10.1016/j.dsx.2018.11.046
Brownrigg JRW, Davey J, Holt PJ, Davis WA, Thompson MM, Ray KK, et al. The association of ulceration of the foot with cardiovascular and all-Cause mortality in patients with diabetes: A meta-analysis. Diabetologia. 2012;55(11):2906-2912. doi: 10.1007/s00125-012-2673-3. DOI: https://doi.org/10.1007/s00125-012-2673-3
Li M. Guidelines and standards for comprehensive clinical diagnosis and interventional treatment for diabetic foot in China (Issue 7.0). J Interv Med. 2021;4(3):117-129. doi: 10.1016/j.jimed.2021.07.003. DOI: https://doi.org/10.1016/j.jimed.2021.07.003
Monteiro-Soares M, Russell D, Boyko EJ, Jeffcoate W, Mills JL, Morbach S, et al. Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36(S1):1-8. doi: 10.1002/dmrr.3273. DOI: https://doi.org/10.1002/dmrr.3273
Singh S, Jajoo S, Shukla S, Acharya S. Educating patients of diabetes mellitus for diabetic foot care. J Family Med Prim Care. 2020;9(1):367-373. doi: 10.4103/jfmpc.jfmpc_861_19. DOI: https://doi.org/10.4103/jfmpc.jfmpc_861_19
Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60. doi: 10.1038/s41586-019-1797-8. DOI: https://doi.org/10.1038/s41586-019-1797-8
Fang WC, Lan CCE. The epidermal keratinocyte as a therapeutic target for management of diabetic wounds. Int J Mol Sci. 2023;24(5). doi: 10.3390/ijms24054290. DOI: https://doi.org/10.3390/ijms24054290
Kumar NP, Moideen K, Viswanathan V, Sivakumar S, Menon PA, Kornfeld H, et al. Heightened circulating levels of antimicrobial peptides in tuberculosis — Diabetes comorbidity and reversal upon treatment. PLoS One. 2017;12(9):1-14. doi: 10.1371/journal.pone.0184753. DOI: https://doi.org/10.1371/journal.pone.0184753
Liang W, Diana J. The dual role of antimicrobial peptides in autoimmunity. Front Immunol. 2020;11(September):1-9. doi: 10.3389/fimmu.2020.02077. DOI: https://doi.org/10.3389/fimmu.2020.02077
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog. 2021;155:104930. doi: 10.1016/j.micpath.2021.104930. DOI: https://doi.org/10.1016/j.micpath.2021.104930
Sanapalli BKR, Yele V, Kalidhindi RSR, Singh SK, Gulati M, Karri VVSR. Human beta defensins may be a multifactorial modulator in the management of diabetic wound. Wound Repair Regen. 2020;28(3):416-421. doi: 10.1111/wrr.12785. DOI: https://doi.org/10.1111/wrr.12785
Han SH, Bishop BM, van Hoek ML. Antimicrobial activity of human beta-defensins and induction by Francisella. Biochem Biophys Res Commun. 2008;371(4):670-674. doi: 10.1016/j.bbrc.2008.04.092. DOI: https://doi.org/10.1016/j.bbrc.2008.04.092
Li G, Wang Q, Feng J, Wang J, Wang Y, Huang X, et al. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother. 2022;155:113694. doi: 10.1016/j.biopha.2022.113694. DOI: https://doi.org/10.1016/j.biopha.2022.113694
Tola A, Regassa LD, Ayele Y. Prevalence and associated factors of diabetic foot ulcers among type 2 diabetic patients attending chronic follow-up clinics at governmental hospitals of Harari Region, Eastern Ethiopia: A 5-year (2013–2017) retrospective study. SAGE Open Med. 2021;9. doi: 10.1177/2050312120987385. DOI: https://doi.org/10.1177/2050312120987385
Anderson SG, Shoo H, Saluja S, Anderson CD, Khan A, Livingston M, et al. Social deprivation modifies the association between incident foot ulceration and mortality in type 1 and type 2 diabetes: a longitudinal study of a primary-care cohort. Diabetologia. 2018;61(4):959-967. doi: 10.1007/s00125-017-4522-x. DOI: https://doi.org/10.1007/s00125-017-4522-x
Mineoka Y, Ishii M, Hashimoto Y, Yamashita A, Nakamura N, Fukui M. Platelet to lymphocyte ratio correlates with diabetic foot risk and foot ulcer in patients with type 2 diabetes. Endocr J. 2019;66(10):905-913. doi: 10.1507/endocrj.EJ18-0477. DOI: https://doi.org/10.1507/endocrj.EJ18-0477
Malepati S, Vakamudi P, Kandati J, Satish S. Bacteriological study of diabetic foot ulcer according to Wagner’s classification: a one-year study. Int Surg J. 2017;5(1):98. doi: 10.18203/2349-2902.isj20175534. DOI: https://doi.org/10.18203/2349-2902.isj20175534
Qadir AN, Mahmoud BM, Mahwi TO, Al-Attar ADMR, Mahmood SO. Prevalence of microorganisms and antibiotic sensitivity among patients with diabetic foot ulcer in Sulaimani City, Iraq. Hosp Pract Res. 2020;5(2):56-63. doi: 10.34172/hpr.2020.11. DOI: https://doi.org/10.34172/hpr.2020.11
Singh AK, Yeola M, Singh N, Damke S. A study on diabetic foot ulcers in Central rural India to formulate empiric antimicrobial therapy. J Fam Med Prim Care. 2020;9(8):4216-422. doi: 10.4103/jfmpc.jfmpc_700_20. DOI: https://doi.org/10.4103/jfmpc.jfmpc_700_20
Younis BB, Shahid A, Arshad R, Khurshid S, Ahmad M, Yousaf H. Frequency of foot ulcers in people with type 2 diabetes, presenting to specialist diabetes clinic at a Tertiary Care Hospital, Lahore, Pakistan. BMC Endocr Disord. 2018;18(1):53. doi: 10.1186/s12902-018-0282-y. DOI: https://doi.org/10.1186/s12902-018-0282-y
Marsya V, Novita I, Mahmuda N. Correlations between age and hypertension on diabetic foot ulcer. Indonesian J Med. 2023;08:179-185. doi: 10.26911/theijmed.2023.08.02.07. DOI: https://doi.org/10.26911/theijmed.2023.08.02.07
Hamilton EJ, Davis WA, Siru R, Baba M, Norman PE, Davis TME. Temporal trends in incident hospitalization for diabetes-related foot ulcer in type 2 diabetes: The fremantle diabetes study. Diabetes Care. 2021;44(3):722-730. doi: 10.2337/dc20-1743. DOI: https://doi.org/10.2337/dc20-1743
Hadi P, Rampal S, Neela VK, Cheema MS, Sarawan Singh SS, Kee Tan E, et al. Distribution of Causative Microorganisms in Diabetic Foot Infections: A Ten-Year Retrospective Study in a Tertiary Care Hospital in Central Malaysia. Antibiotics. 2023;12(4). DOI: https://doi.org/10.3390/antibiotics12040687
Jasem NM, Abdul-Razaq AS. Evalution of biomarkers in Iraqi patients with diabetes mellitus type 2. Egypt J Hosp Med. 2023;90(2):3062-3066. doi: 10.21608/EJHM.2023.288392. DOI: https://doi.org/10.21608/ejhm.2023.288392
Martínez-De Jesús FR, Ramos-De La Medina A, Remes-Troche JM, Armstrong DG, Wu SC, Lázaro Martínez JL, et al. Efficacy and safety of neutral pH superoxidised solution in severe diabetic foot infections. Int Wound J. 2007;4(4):353-362. doi: 10.1111/j.1742-481X.2007.00363.x. DOI: https://doi.org/10.1111/j.1742-481X.2007.00363.x
Hozzein WN, Badr G, Badr BM, Allam A, Ghamdi AA, Al-Wadaan MA, et al. Bee venom improves diabetic wound healing by protecting functional macrophages from apoptosis and enhancing Nrf2, Ang-1 and Tie-2 signaling. Mol Immunol. 2018;103(April):322-335. doi: 10.1016/j.molimm.2018.10.016/ DOI: https://doi.org/10.1016/j.molimm.2018.10.016
Badr G. Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: The critical role of β-Defensin-1, -2 and -3. Lipids Health Dis. 2013;12(1):1-11. doi: 10.1186/1476-511X-12-46. DOI: https://doi.org/10.1186/1476-511X-12-46
Petkovic M, Vangmouritzen M, Mojsoska B, Jenssen H. Immunomodulatory properties of host defence peptides in skin wound healing. Biomolecules. 2021;11(7):952. doi: 10.3390/biom11070952. DOI: https://doi.org/10.3390/biom11070952
Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815-819. doi: 10.1038/nm.3887. DOI: https://doi.org/10.1038/nm.3887
Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. Transl Res. 2021;236:109-116. doi: 10.1016/j.trsl.2021.05.006. DOI: https://doi.org/10.1016/j.trsl.2021.05.006
Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H. The human β-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol. 2005;175(3):1776-1784. doi: 10.4049/jimmunol.175.3.1776. DOI: https://doi.org/10.4049/jimmunol.175.3.1776
Chen X, Niyonsoba F, Ushio H, Hara M, Yokoi H, Matsumoto K, et al. Antimicrobial peptides human β-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol. 2007;37(2):434-444. doi: 10.1002/eji.200636379. DOI: https://doi.org/10.1002/eji.200636379
Gursoy UK, Könönen E, Luukkonen N, Uitto V. Human neutrophil defensins and their effect on epithelial cells. J Periodontol. 2013;84(1):126-133. doi: 10.1902/jop.2012.120017. DOI: https://doi.org/10.1902/jop.2012.120017
Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, et al. Linear analogues of human β-defensin 3: Concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. ChemBioChem. 2008;9(6):964-973. doi: 10.1002/cbic.200700560. DOI: https://doi.org/10.1002/cbic.200700560
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev. 2021;179:114008. doi: 10.1016/j.addr.2021.114008. DOI: https://doi.org/10.1016/j.addr.2021.114008
Cardot-Martin E, Casalegno JS, Badiou C, Dauwalder O, Keller D, Prévost G, et al. α-Defensins partially protect human neutrophils against Panton-Valentine leukocidin produced by Staphylococcus aureus. Lett Appl Microbiol. 2015;61(2):158-164. doi: 10.1111/lam.12438. DOI: https://doi.org/10.1111/lam.12438
Linn O, Menges B, Lammert F, Weber SN, Krawczyk M. Altered expression of antimicrobial peptides in the upper gastrointestinal tract of patients with diabetes mellitus. Nutrients. 2023;15(3):1-12. doi: 10.3390/nu15030754. DOI: https://doi.org/10.3390/nu15030754
Lan CC, Wu CS, Huang SM, Kuo HY, Wu IH, Liang CW, Chen GS. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br J Dermatol. 2012;166(6):1221-1229. doi: 10.1111/j.1365-2133.2012.10847.x. DOI: https://doi.org/10.1111/j.1365-2133.2012.10847.x
Bolatchiev A, Baturin V, Bazikov I, Maltsev A, Kunitsina E. Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo. Fundam Clin Pharmacol. 2020;34(1):102-108. doi: 10.1111/fcp.12499. DOI: https://doi.org/10.1111/fcp.12499
Mathew B, Nagaraj R. Variations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing. PLoS One. 2017;12(4):1-16. doi: 10.1371/journal.pone.0175858. DOI: https://doi.org/10.1371/journal.pone.0175858
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev. 2017;41(3):323-342. doi: 10.1093/femsre/fux012. DOI: https://doi.org/10.1093/femsre/fux012

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).