Comparative Pharmacokinetic Evaluation of Oral Anastrozole Suspension and Transdermal Nano-Spanlastics Patches in Albino Rabbits
DOI:
https://doi.org/10.54133/ajms.v9i1.2118Keywords:
Anastrozole, Albino rabbits, Pharmacokinetics, Spanlastics, Transdermal patchesAbstract
Background: Anastrozole is a cornerstone in the treatment of estrogen receptor-positive breast cancer in postmenopausal women. Oral administration presents several challenges that can impact therapeutic efficacy and patient adherence. The adverse effects can potentially compromise treatment outcomes. Objective: To compare the bioavailability of Anastrozole as a transdermal ANS-nano-spanlastics (SPLs) patch with oral ANS-suspension. Methods: This study involved 12 female albino rabbits, weighing 2 kg, which were randomly divided into two groups of six animals each. Group I received a dose of 0.104 mg of pure anastrozole suspension orally, while Group II was administered anastrozole as transdermal nano-Spanlastic patches. Plasma anastrozole concentrations were quantified using reverse-phase high-performance liquid chromatography (RP-HPLC). Results: The results demonstrated significant differences between the oral and transdermal delivery of Anastrozole. For the oral suspension, the maximum plasma concentration was 38 ng/mL, achieved at 1.5 hours, with an AUC of 368 ng · h/mL. The nano-spanlastic patch produced a lower Cmax (24.2 ng/ml) at a delayed Tmax (24 hours) and a significantly greater AUC (10714.58 ng·h/ml). The relative bioavailability of the transdermal formulation was 29 times higher than that of the oral route after 120 hr. Conclusions: The nanospanlastic transdermal patch offers a more efficient and sustained method of anastrozole delivery compared to conventional oral suspension.
Downloads
References
Ghaferi M, Alavi SE, Phan K, Maibach H, Mohammed Y. Transdermal drug delivery systems (TDDS): recent advances and failure modes. Mol Pharm. 2024;21(11):5373-5391. doi:10.1021/acs.molpharmaceut.4c00211. DOI: https://doi.org/10.1021/acs.molpharmaceut.4c00211
Kumar V, Praveen N, Kewlani P, Arvind, Singh A, Gautam AK, et al. Transdermal drug delivery systems. In: Advanced Drug Delivery: Methods and Applications, Springer Nature Singapore; 2023 Oct 25 (pp. 333-362). doi: 10.1007/978-981-99-6564-9_13. DOI: https://doi.org/10.1007/978-981-99-6564-9_13
Wang L, Ma J, Li J, Fang L, Liu C. Transdermal patch based on pressure-sensitive adhesive: the importance of adhesion for efficient drug delivery. Expert Opin Drug Deliv. 2025;22(3):405-420. doi: 10.1080/17425247.2025.2460650. DOI: https://doi.org/10.1080/17425247.2025.2460650
Karve T, Dandekar A, Agrahari V, Peet MM, Banga AK, Doncel GF. Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches. Adv Drug Deliv Rev. 2024:115326. doi: 10.1016/j.addr.2024.115326. DOI: https://doi.org/10.1016/j.addr.2024.115326
Martins M, Veiga F, Paiva-Santos AC, Pires PC. Drug repurposing and nanotechnology for topical skin cancer treatment: Redirecting toward targeted and synergistic antitumor effects. ACS Pharmacol Transl Sci. 2025;8(2):308-338. doi: 10.1021/acsptsci.4c00679. DOI: https://doi.org/10.1021/acsptsci.4c00679
Elnahas OS, Osama R, Abdel-Haleem KM, El-Nabarawi MA, Teaima MH, El-Sadek HM, et al. Integration of levofloxacin-loaded spanlastics and prednisolone into a buccal mucoadhesive sponge for combating severe pneumonia: In-vitro/ex-vivo assessment, qRT-PCR analysis, and quantification of the HMGB-1/NF-қB signalling pathway. J Drug Deliv Sci Technol. 2024;100:106019. doi: 10.1016/j.jddst.2024.106019. DOI: https://doi.org/10.1016/j.jddst.2024.106019
Almohamady HI, Mortagi Y, Gad S, Zaitone S, Alshaman R, Alattar A, et al. Spanlastic nano-vesicles: A novel approach to improve the dissolution, bioavailability, and pharmacokinetic behavior of famotidine. Pharmaceuticals. 2024;17(12):1614. doi: 10.3390/ph17121614. DOI: https://doi.org/10.3390/ph17121614
Ahmed Mousa S, Qelliny MR, Ibrahem RA, Hadiya S, Sarhan HA, Mady FM. Spanlastics: A unique formulation strategy in the delivery of pharmaceuticals-carbapenems as a model. J Adv Biomed Pharm Sci. 2024:117-125. doi: 10.21608/jabps.2024.298914.1221. DOI: https://doi.org/10.21608/jabps.2024.298914.1221
Bukhary HA, Hosny KM, Rizg WY, Alahmadi AA, Murshid SS, Alalmaie A, et al. Development, optimisation, in-vitro, and in-vivo evaluation of chitosan-inlayed nano-spanlastics encompassing lercanidipine HCl for enhancement of bioavailability. J Drug Deliv Sci Technol. 2024;96:105677. doi: 10.1016/j.jddst.2024.105677. DOI: https://doi.org/10.1016/j.jddst.2024.105677
Dhilna F, Binitha RN, Riswina N, Divya S, Rima J, Janish PA, et al. Mechanisms of action for FDA-approved drugs targeting breast cancer. J Senol Breast Dis. 2025;38(1):100632. doi: 10.1016/j.senol.2024.100632. DOI: https://doi.org/10.1016/j.senol.2024.100632
Kim N, Lukong KE. Treating ER-positive breast cancer: a review of the current FDA-approved SERMs and SERDs and their mechanisms of action. Oncol Rev. 2025;19:1564642. doi: 10.3379/or.2025.1564642. DOI: https://doi.org/10.3389/or.2025.1564642
Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv. 2024;21(12):1735-1754. doi: 10.1080/17425247.2024.2412823. DOI: https://doi.org/10.1080/17425247.2024.2412823
Nasrine A, Mohanto S, Narayana S, Ahmed MG. Enhanced pharmacokinetic approach for Anastrozole via macromolecule-based silk fibroin nanoparticles incorporated in situ injectables for oestrogen-positive breast cancer therapy. J Drug Target. 2025;33(5):793-803. doi: 10.1080/1061186X.2024.2449486. DOI: https://doi.org/10.1080/1061186X.2024.2449486
Cao X, Li K, Wang J, Xie X, Sun L. PBPK model of pegylated liposomal doxorubicin to simultaneously predict the concentration-time profile of encapsulated and free doxorubicin in tissues. Drug Deliv Transl Res. 2025;15(4):1342-1362. doi: 10.1007/s13346-024-01680-0. DOI: https://doi.org/10.1007/s13346-024-01680-0
Bassani D, Parrott NJ, Manevski N, Zhang JD. Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules. Expert Opin Drug Discov. 2024:1-6. doi: 10.1080/17460441.2024.2348157. DOI: https://doi.org/10.1080/17460441.2024.2348157
Suksaeree J, Maneewattanapinyo P, Panrat K, Pichayakorn W, Monton C. Solvent‐cast polymeric films from pectin and Eudragit® NE 30D for transdermal drug delivery systems. J Polymer Environ. 2021;29:3174-3184. doi: 10.1007/s10924-021-02108-3. DOI: https://doi.org/10.1007/s10924-021-02108-3
National Committee for Research Ethics in Science and Technology. Guidelines For Research Ethics in Science and Technology. JahrbWiss Eth. 2009;14(1). Available at: https://www.forskningsetikk.no/en/guidelines/science-and-technology/guidelines-for-research-ethics-in-science-and-technology/ DOI: https://doi.org/10.1515/9783110208856.255
Jaiswal R, Wadetwar R. Tailoring cilnidipine nanostructured lipid carriers loaded transdermal patch for the treatment of hypertension: optimisation, ex vivo and in vivo studies. J Dispers Sci Technol. 2024:1-3. doi: 10.1080/01932691.2024.2431085. DOI: https://doi.org/10.1080/01932691.2024.2431085
Al-Zheery WH, Kassab HJ. Pharmacokinetic study of oral disulfiram suspension and topical transdermal nano-invasomes gel in Wistar rats. Al-Rafidain J Med Sci. 2024;7(1):159-163. doi: 10.54133/ajms.v7i1.1130. DOI: https://doi.org/10.54133/ajms.v7i1.1130
El-Bakry R, Mahmoud DM, Attia ME, Fouad AG, Mohammed NH, Belal A, et al. Improving the targeting and therapeutic efficacy of anastrazole for the control of breast cancer: In vitro and in vivo characterisation. Int J Pharm. 2024;665:124684. doi: 10.1016/j.ijpharm.2024.124684. DOI: https://doi.org/10.1016/j.ijpharm.2024.124684
Abbas IK, Abd Alhammid SN, Fadhil AA, Hareeja MM. Bioavailability of bilastine oral self-nanoemulsion: Comparative study with commercial formula in rats. Al-Rafidain J Med Sci. 2024;7(1):13-17. doi: 10.54133/ajms.v7i1.1024. DOI: https://doi.org/10.54133/ajms.v7i1.1024
Hashim AA, Rajab NA. Anastrozole loaded nanostructured lipid carriers: Preparation and evaluation. Iraqi J Pharm Sci. 2021;30(2):185-195. doi: 10.31351/vol30iss2pp185-195. DOI: https://doi.org/10.31351/vol30iss2pp185-195
Abdulqader AA, Rajab NA. Bioavailability study of posaconazole in rats after oral poloxamer P188 nano-micelles and oral posaconazole pure drug. J Adv Pharm Edu Res. 2023;13(2):141. doi: 10.51847/Q59uyvRmY3. DOI: https://doi.org/10.51847/Q59uyvRmY3
Sabareesh M, Rajangam J, Prakash Raj K, Yanadaiah JP. Formulation and evaluation of novel vesicular nanoethosomal patches for transdermal delivery of zidovudine: In vitro, ex vivo, and in vivo pharmacokinetic investigations. J Dispers Sci Technol. 2024:1-4. doi: 10.1080/01932691.2024.2444976. DOI: https://doi.org/10.1080/01932691.2024.2444976
Al-Hashimi NN, Shahin RO, El-Sheikh AH, Jibreel MJ, Alsakhen NA, Alqudah AM, et al. A new approach for determination of urinary 8-hydroxy-2′-deoxyguanosine in cancer patients using reinforced solid/liquid phase microextraction combined with HPLC-DAD. Acta Chromatographica. 2024;36(3):218-227. doi: 10.1556/1326.2023.01142. DOI: https://doi.org/10.1556/1326.2023.01142
Al-mansoori MK, Sabri LA. Preparation and evaluation of transdermal gel loaded with spanlastics containing meloxicam. J Res Pharm. 2024;28(4). doi: 10.29228/jrp.801. DOI: https://doi.org/10.29228/jrp.801
Sulaiman HT, Rajab NA. Soluplus and solution HS-15 olmesartan medoxomil nanomicelle based oral fast dissolving film: in vitro and in vivo characterisation. Farmacia. 2024;72(4). doi: 10.31925/farmacia.2024.4.7. DOI: https://doi.org/10.31925/farmacia.2024.4.7
Tawfik MA, Eltaweel MM, Fatouh AM, Shamsel-Din HA, Ibrahim AB. Brain targeting of zolmitriptan via transdermal threesomes: statistical optimisation and in vivo biodistribution study by 99mTc radiolabelling technique. Drug Del Transl Res. 2023:1-8. doi: 10.1007/s13346-023-01373-0. DOI: https://doi.org/10.1007/s13346-023-01373-0

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).