Preparation, Characterization, and in vivo Pharmacokinetics of Innovative Mixed Polymeric Nanomicelles Coated with Hyaluronic Acid as a Retinal Brimonidine-Carrier System
DOI:
https://doi.org/10.54133/ajms.v7i2.1422Keywords:
Brimonidine, Nanomicelle, Ocular bioavailability, Ophthalmic delivery, Retinal targetingAbstract
Background: Due to the limited ocular bioavailability, local ocular injections and systemic delivery were used instead of topical application. These alternative approaches were accompanied by numerous disadvantages. Objectives: Create and test mixed polymeric nanomicelles coated with hyaluronic acid as a topical drug carrier for targeted delivery to the vitreous fluid and retina, overcoming the limitations of eye drops. Methods: The thin-film hydration process was utilized to create nanomicelles, and their physical properties were studied. Colored, pigmented, healthy albino rabbits were employed in vivo experiment. Following anesthesia, 35µl of brimonidine nanomicelles and Alphagan® were administered topically. Samples from the vitreous and retina were collected for RP-HPLC analysis. Results: The nanomicelles' physical qualities made them appropriate as a carrier system for the vitreous fluid. They were spherical with a clear appearance and a pharmacological concentration of 97.11%. The particle size range was 134.2nm, with a PDI of 0.2824. The drug entrapment effectiveness was 62.69%, whereas the surface tension was 39.18 mN/m. Their vitreous pharmacokinetics Cmax, Tmax, and AUC0-t were 28.1ng/µl, 2.0min, and 1268.6ng/µl*min, respectively, compared to 5.0ng/µl, 8.0min, and 129.32ng/µl*min for Alphagan eye drops. The retinal pharmacokinetics were 64.9ng/µl, 17.0min, and 18688.04ng/µl*min, respectively, compared to 31.6ng/µl, 30min, and 6377.67ng/µl*min with Alphagan eye drops. Conclusions: Brimonidine nanomicelles coated with hyaluronic acid could be an effective topical drug-carrier method for delivering medications to the vitreous and retina, with higher bioavailability than eye drops.
Downloads
References
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Intl J Pharm. 2021;607:120924. doi: 10.1016/j.ijpharm.2021.120924.
Agarwal P, Rupenthal ID. Non-aqueous formulations in topical ocular drug delivery–A paradigm shift?. Adv Drug Del Rev. 2023;198:114867. doi: 10.1016/j.addr.2023.114867.
Al-Gawhari FJ. Factors affecting on in vitro release of miconazole from in situ ocular gel. J Adv Pharm Technol Res. 2023;14(4):294-298. doi: 10.4103/japtr.japtr_91_23.
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm. 2021;607:120924. doi: 10.1016/j.ijpharm.2021.120924.
Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564-1582. doi: 10.1016/j.biopha.2018.08.138.
Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. doi: 10.1208/s12249-023-02516-9.
Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol. 2018;11(6):1038. doi: 10.18240/ijo.2018.06.23.
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Controll Rel. 2017;248:96-116. doi: 10.1016/j.jconrel.2017.01.012.
Al-Akayleh F, Al-Naji I, Adwan S, Al-Remawi M, Shubair M. Enhancement of curcumin solubility using a novel solubilizing polymer Soluplus®. J Pharm Innov. 2020:1-3. doi: 10.1007/s12247-020-09500-x.
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. Wiley Interdisciplinary Reviews: Nanomed Nanobiotechnol. 2019;11(4):e1548. doi: 10.1002/wnan.1548.
Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol. 2021;15(1):19-27. doi: 10.1049/nbt2.12018.
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol. 2020;16(10):885-906. doi: 10.1080/17425255.2020.1803278.
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, et al. Polymer-and lipid-based nanocarriers for ocular drug delivery: current status and future perspectives. Adv Drug Del Rev. 2023;196:114770. doi: 10.1016/j.addr.2023.114770.
Jiang H, Xu Z. Hyaluronic acid-based nanoparticles to deliver drugs to the ocular posterior segment. Drug Del. 2023;30(1):2204206. doi: 10.1080/10717544.2023.2204206.
Watanabe M, Sato T, Tsugeno Y, Higashide M, Furuhashi M, Umetsu A, et al. An α2-adrenergic agonist, brimonidine, beneficially affects the TGF-β2-treated cellular properties in an in vitro culture model. Bioengineering. 2022;9(7):310. doi: 10.3390/bioengineering9070310.
Knox C, Wilson M, Klinger CM, et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Available at: https://go.drugbank.com/drugs/DB00484
Abdulqader AA, Sultan NA. Preparation and characterization of posaconazole as a nano-micelle using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Iraqi J Pharm Sci. 2023;32:26-32. doi: 10.31351/vol32issSuppl.pp26-32.
Nemr AA, El-Mahrouk GM, Badie HA. Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Del. 2022;29(1):2343-2356. doi: 10.1080/10717544.2022.2100513.
Sulaiman HT, Rajab NA. Soluplus and Solutol HS-15 Olmesartan medoxomil nanomicelle based oral fast dissolving film: In vitro and in vivo characterization. Farmacia. 2024;72(4). doi: 10.31925/farmacia.2024.4.7.
Kareem SH. Interfacial and thermodynamic properties of amphiphile sodium di-2-ethylhexylsulfosuccinate–diphenlhydramen drug system. Egyp J Chem. 2021;64(11):6419-6422. doi: 10.21608/ejchem.2021.78211.3822.
Al-lami MS, Oudah MH, Rahi FA. Preparation and characterization of domperidone nanoparticles for dissolution improvement. Iraqi J Pharm Sci. 2018;27(1):39-52. doi: 10.31351/vol27iss1pp39-52.
Tamhane M, Luu KT, Attar M. Ocular pharmacokinetics of brimonidine drug delivery system in monkeys and translational modeling for selection of dose and frequency in clinical trials. J Pharmacol Exp Ther. 2021;378(3):207-2014. doi: 10.1124/jpet.120.000483.
Giannos SA, Kraft ER, Luisi JD, Schmitz-Brown ME, Reffatto V, Merkley KH, et al. Topical solution for retinal delivery: Bevacizumab and ranibizumab eye drops in anti-aggregation formula (AAF) in rabbits. Pharm Res. 2024;41(6):1247-1256. doi: 10.1007/s11095-024-03721-2.
Abushammala IM, Mqat BM, Hamdan AM. Effect of curcumin at various doses on the pharmacokinetic profile of tacrolimus in healthy rabbits. Iraqi J Pharm Sci. 2022;31(1):246-250. doi: 10.31351/vol31iss1pp246-250.
Gupta S, Fink MK, Martin LM, Sinha PR, Rodier JT, Sinha NR, et al. A rabbit model for evaluating ocular damage from acrolein toxicity in vivo. Ann N Y Acad Sci. 2020;1480(1):233-245. doi: 10.1111/nyas.14514.
Abdel Azim EA, Elkheshen SA, Hathout RM, Fouly MA, El Hoffy NM. Augmented in vitro and in vivo profiles of brimonidine tartrate using gelatinized-core liposomes. Int J Nanomed. 2022:2753-2776. doi: 10.2147/IJN.S370192.
Acheampong AA, Shackleton M, John B, Burke J, Wheeler L, Tang-Liu D. Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. Drug Metab Disposition. 2002;30(4):421-429. doi: 10.1124/dmd.30.4.421.
Suzuki G, Kunikane E, Shigemi W, Shinno K, Kozai S, Kurata M, Kawamura A. Ocular and systemic pharmacokinetics of brimonidine and brinzolamide after topical administration in rabbits: comparison between fixed-combination and single-drug formulations. Cur Eye Res. 2021;46(3):380-386. doi: 10.1080/02713683.2020.1800046.
Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Computer Method Program Biomed. 2010;99(3):306-314. doi: 10.1016/j.cmpb.2010.01.007.
Karamanos NK, Lamari F, Katsimpris J, Gartaganis S. Development of an hplc method for determining the alpha2‐adrenergic receptor agonist brimonidine in blood serum and aqueous humor of the eye. Biomed Chromatograph. 1999;13(1):86-88. doi: 10.1002/(SICI)1099-0801(199902)13:1<86::AID-BMC816>3.0.CO;2-5.
Narendra A, Deepika D, Annapurna MM. Liquid chromatographic method for the analysis of brimonidine in ophthalmic formulations. J Chem. 2012;9(3):1327-1331. doi: 10.1155/2012/647187.
Al-Zheery WH, Kassab HJ. Pharmacokinetic study of oral disulfiram suspension and topical transdermal nano-invasomes gel in Wistar rats. Al-Rafidain J Med Sci. 2024;7(1):159-163. doi: 10.54133/ajms.v7i1.1130.
Xu X, Li G, Zuo YY. Effect of model tear film lipid layer on water evaporation. Investig Ophthalmol Visual Sci. 2023;64(1):13. doi: 10.1167/iovs.64.1.13.
Zhang J, Liu Z, Tao C, Lin X, Zhang M, Zeng L, et al. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur J Pharm Sci. 2020;144:105229. doi: 10.1016/j.ejps.2020.105229 .
Li C, Chen R, Xu M, Qiao J, Yan L, Guo XD. Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Del. 2018;25(1):1258-1265. doi: 10.1080/10717544.2018.1474972.
Rangel-Yagui CD, Pessoa A, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci. 2005;8(2):147-163. PMID: 16124926.
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol. 2020;16(10):885-906. doi: 10.1080/17425255.2020.1803278.
Jiang H, Xu Z. Hyaluronic acid-based nanoparticles to deliver drugs to the ocular posterior segment. Drug Del. 2023;30(1):2204206. doi: 10.1080/10717544.2023.2204206.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).