Effect of Metformin on the Expression of α-7nAch Receptors in Alloxan-induced Diabetic Mouse Model: A Preliminary Study
DOI:
https://doi.org/10.54133/ajms.v9i1.1937Keywords:
α7-nAChRs, Dementia, Diabetic mouse model, MetforminAbstract
Background: Biological evidence confirmed the link between diabetic disease and cognitive dysfunction, but the exact mechanism is not fully understood. Alpha-7 nicotinic acetylcholine receptors (α7-nAChRs) are transmembrane receptors activated in response to neurotransmitters and play an important role in the mammal’s cognitive function. Objectives: To study the effect of metformin on α7-nAchRs expression in brain and spleen tissues of diabetic mice. Methods: Forty mice were allocated into 4 groups and were subjected to 7- and 12-week interventions. G1 was healthy, G2 experimentally induced diabetes without treatment, and G3 and G4 were diabetic mice treated with metformin (50 and 100 mg/kg, respectively). Blood glucose level was monitored during treatment. α7-nAChRs expression was evaluated by the immunohistochemical method after ending treatment. Results: In brain tissue, G1 showed strong expression (+2.5), and G2 weak (+1) for both periods. G3 and G4 revealed moderate (+1.5) staining in 7 weeks and weak (+1) in 12 weeks. In spleen tissues, G1, G2, and G3 showed strong staining (+3), but G4 revealed moderate (+1.5) in 7 weeks and moderate to strong (+3/+2.5) in 12 weeks. Conclusions: Diabetic mice exhibit low expression of α7nAChRs in the brain tissue, but those receptors were moderately recovered at 7 weeks of therapy duration by metformin, which may be a good therapeutic option for the management of dementia.
Downloads
References
Hameed MR, Ullah PH. Antidiabetic drugs influences of the activity of acetylcholinesterase in type 2 diabetes mellitus. J Pharm Sci Res. 2019;11(2):359-366.
Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, et al. Diabetes and cognitive impairment: A role for glucotoxicity and dopaminergic dysfunction. Int J Mol Sci. 2021;22(22):12366. doi: 10.3390/ijms222212366. DOI: https://doi.org/10.3390/ijms222212366
Dove A, Shang Y, Xu W, Grande G, Laukka EJ, Fratiglioni L, et al. The impact of diabetes on cognitive impairment and its progression to dementia. Alzheimer’s Dementia. 2021;17:1769–1778. doi: 10.1002/alz.12482. DOI: https://doi.org/10.1002/alz.12482
Huang L, Zhu M, Ji J. Association between hypoglycemia and dementia in patients with diabetes: a systematic review and meta-analysis of 1.4 million patients. Diabetol Metab Syndr. 2022;14(1):31. doi: 10.1186/s13098-022-00799-9. DOI: https://doi.org/10.1186/s13098-022-00799-9
Zheng B, Su B, Price G, Tzoulaki I, Ahmadi-Abhari S, Middleton L. Glycemic control, diabetic complications, and risk of dementia in patients with diabetes: Results from a large U.K. cohort study. Diabetes Care. 2021;44:1556–1563. doi: 10.2337/dc20-2850. DOI: https://doi.org/10.2337/dc20-2850
Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes. 2023;14(2):92. doi: 10.4239/wjd.v14.i2.92. DOI: https://doi.org/10.4239/wjd.v14.i2.92
Viggiano D, Wagner CA, Martino G, Nedergaard M, Zoccali C, Unwin R, et al. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. 2020;16:452–469. doi: 10.1038/s41581-020-0266-9. DOI: https://doi.org/10.1038/s41581-020-0266-9
Pike KE, Cavuoto MG, Li L, Wright BJ, Kinsella GJ. Subjective cognitive decline: Level of risk for future dementia and mild cognitive impairment, a meta-analysis of longitudinal studies. Neuropsychol Rev. 2022;32:703–735. doi: 10.1007/s11065-021-09522-3. DOI: https://doi.org/10.1007/s11065-021-09522-3
Cao Q, Tan CC, Xu W, Hu H, Cao XP, Dong Q, et al. The prevalence of dementia: A systematic review and meta-analysis. J Alzheimers Dis. 2020;73:1157–1166. doi: 10.3233/JAD-191092. DOI: https://doi.org/10.3233/JAD-191092
de la Monte SM. Conquering insulin network dysfunctions in Alzheimer’s disease: Where are we today? J Alzheimer’s Dis. 2024;101(s1):S317-343. doi: 10.3233/JAD-240069. DOI: https://doi.org/10.3233/JAD-240069
Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective. Lancet Neurol. 2008;7(2):184-190. doi: 10.1016/S1474-4422(08)70021-8. DOI: https://doi.org/10.1016/S1474-4422(08)70021-8
Kopf D, Frölich L. Risk of incident Alzheimer’s disease in diabetic patients: A systematic review of prospective trials. J Alzheimer’s Dis. 2009;16 (4):677–685. doi: 10.3233/JAD-2009-1011. DOI: https://doi.org/10.3233/JAD-2009-1011
Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology. 2020; 177:108256. doi: 10.1016/j.neuropharm.2020.108256. DOI: https://doi.org/10.1016/j.neuropharm.2020.108256
Lee CH, Hung SY. Physiologic functions and therapeutic applications of α7 nicotinic acetylcholine receptor in brain disorders. Pharmaceutics. 2022;15(1):31. doi: 10.3390/pharmaceutics15010031. DOI: https://doi.org/10.3390/pharmaceutics15010031
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res. 2023;191:106764. doi: 10.1016/j.phrs.2023.106764. DOI: https://doi.org/10.1016/j.phrs.2023.106764
Recio-Barbero M, Segarra R, Zabala A, González-Fraile E, González-Pinto A, Ballesteros J. Cognitive enhancers in schizophrenia: a systematic review and meta-analysis of alpha-7 nicotinic acetylcholine receptor agonists for cognitive deficits and negative symptoms. Front Psychiatr. 2021;12:631589. doi: 10.3389/fpsyt.2021.631589. DOI: https://doi.org/10.3389/fpsyt.2021.631589
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021;42(1):77-96. doi: 10.1210/endrev/bnaa023. DOI: https://doi.org/10.1210/endrev/bnaa023
Zhao RR, Xu XC, Xu F, Zhang WL, Zhang WL, Liu LM, et al. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun. 2014;448:414–417. doi: 10.1016/j.bbrc.2014.04.130. DOI: https://doi.org/10.1016/j.bbrc.2014.04.130
Du MR, Gao QY, Liu CL, Bai LY, Li T, Wei FL. Exploring the pharmacological potential of metformin for neurodegenerative diseases. Front Aging Neurosci. 2022:26;14:838173. doi: 10.3389/fnagi.2022.838173. DOI: https://doi.org/10.3389/fnagi.2022.838173
Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (Lausanne). 2018;9:400. doi: 10.3389/fendo.2018.00400. DOI: https://doi.org/10.3389/fendo.2018.00400
Akinola O, Gabriel M, Suleiman A-A, Olorunsogbon F. Treatment of alloxan-induced diabetic rats with metformin or glitazones is associated with amelioration of hyperglycemia and neuroprotection. Open Diabetes J. 2012;5(1):8-12. DOI: https://doi.org/10.2174/1876524601205010008
Kim SW, Roh J, Park CS. Immunohistochemistry for pathologists: Protocols, pitfalls, and tips. J Pathol Transl Med. 2016;50(6):411-418. doi: 10.4132/jptm.2016.08.08. DOI: https://doi.org/10.4132/jptm.2016.08.08
Ren JM, Zhang SL, Wang XL, Guan ZZ, Qi XL. Expression levels of the α7 nicotinic acetylcholine receptor in the brains of patients with Alzheimer's disease and their effect on synaptic proteins in SH-SY5Y cells. Mol Med Rep. 2020;22(3):2063-2075. doi: 10.3892/mmr.2020.11253. DOI: https://doi.org/10.3892/mmr.2020.11253
Conejero-Goldberg C, Davies P, Ulloa L. Alpha7 nicotinic acetylcholine receptor: A link between inflammation and neurodegeneration. Neurosci Biobehav Rev. 2008;32:693–706. doi: 10.1016/j.neubiorev.2007.10.007. DOI: https://doi.org/10.1016/j.neubiorev.2007.10.007
D’Andrea M, Nagele R. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimers disease pyramidal neurons. Curr Pharm Des. 2006;12:677–684. doi: 10.2174/138161206775474224. DOI: https://doi.org/10.2174/138161206775474224
Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic acetylcholine receptor signalling: Roles in alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev. 2009;61:39–61. doi: 10.1124/pr.108.000562. DOI: https://doi.org/10.1124/pr.108.000562
Hernandez CM, Kayed R, Zheng H, Sweatt JD, Dineley KT. Loss of α7 nicotinic receptors enhances β-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2010;30:2442–2453. doi: 10.1523/JNEUROSCI.5038-09.2010. DOI: https://doi.org/10.1523/JNEUROSCI.5038-09.2010
Vida G, Peña G, Deitch EA, Ulloa L. α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol. 2011; 186:4340–4346. doi: 10.4049/jimmunol.1003722. DOI: https://doi.org/10.4049/jimmunol.1003722
Salaga M, Blomster LV, Piechota-Polańczyk A, Zielińska M, Jacenik D, Cygankiewicz AI, et al. Encenicline, an α7 nicotinic acetylcholine receptor partial agonist, reduces immune cell infiltration in the colon and improves experimental colitis in mice. J Pharmacol Exp Ther. 2016; 356:157–169. doi: 10.1124/jpet.115.228205. DOI: https://doi.org/10.1124/jpet.115.228205
Prescott SL, Liberles SD. Internal senses of the vagus nerve. Neuron. 2022;110(4):579-599. doi: 10.1016/j.neuron.2021.12.020. DOI: https://doi.org/10.1016/j.neuron.2021.12.020
Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008-11103. doi: 10.1073/pnas.0803237105. DOI: https://doi.org/10.1073/pnas.0803237105
Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. 2013;24:1451–1460. doi: 10.1681/ASN.2013010084. DOI: https://doi.org/10.1681/ASN.2013010084
Fatemikia H, Dehghanian A, Ziaian B, Farokhipour M, Ketabchi F. Roles of alpha-7 nicotinic acetylcholine receptors and spleen in the lung injury induced by a repeated saline lavage in rat. BMC Pulm Med. 2022; 22(1):367. doi: 10.1186/s12890-022-02151-3. DOI: https://doi.org/10.1186/s12890-022-02151-3
Hashish HA. Protective role of Ginger against metformin induced alteration in Bcl2 expression in the spleen of normoglycemic albino rat. J Histol Histopathol. 2019;6(4):1-5. DOI: https://doi.org/10.7243/2055-091X-6-4

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).