Metformin Effect Against Rotenone-Induced Parkinsonism-Like Symptoms in a Mouse Model

Authors

  • Israa Hussein Al-Mammory Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
  • Ghaith Ali Jasim Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Bayan University, Baghdad, Iraq
  • Wassan Abdulkareem Abbas Department of Clinical Lab Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.54133/ajms.v8i2.1728

Keywords:

α-Synuclein, Dopa decarboxylase, Metformin, Parkinson’s disease, Rotenone, TNF-α

Abstract

Background: Targeting problems in lipid metabolism for the treatment of Parkinson's disease (PD) has advanced significantly in recent years through the use of medications like metformin (MET). In a mouse model of rotenone-induced PD, MET, a commonly prescribed antidiabetic medication, may have a neuroprotective effect. Rotenone is an inhibitor of mitochondrial complex I that can lead to PD and dopaminergic (DA) cell loss. Objective: To evaluate the mechanisms behind the MET neuroprotective effect and possible additive benefits of MET/levodopa-carbidopa (L-DOPA/carbidopa) in rotenone-induced parkinsonism in male mice. Methods: Albino mice were given rotenone (1 mg/kg/48hr, subcutaneous) for 17 days. Following the administration of rotenone, a 30-day oral MET treatment (500 mg/kg/day) was initiated. The neuroprotective effect of MET on rotenone-induced dopaminergic toxicity was assessed by detection of α-synuclein and the neuroinflammatory marker tumor necrosis factor-α (TNF-α), and we also showed that DOPA decarboxylase (DDC) levels in plasma could detect PD using enzyme-linked immunosorbent assay (ELISA) kits. The behavioral tests were performed by wire hanging, catalepsy, and pole tests. Results: Metformin ameliorated the behavioral deficits in the Parkinsonian mouse model, significantly decreased the levels of α-synuclein and tumor necrosis factor-α (TNF-α), and serum DDC levels were significantly reduced. Conclusions: Metformin can alleviate rotenone-induced Parkinson's-like symptoms in a mouse model.

Downloads

Download data is not yet available.

References

Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson’s disease. J Chem Neuroanat. 2020;104:101752. doi: 10.1016/j.jchemneu.2020.101752. DOI: https://doi.org/10.1016/j.jchemneu.2020.101752

Zhu J, Cui Y, Zhang J, Yan R, Su D, Zhao D, et al. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: a systematic review and meta-analysis. Lancet Health Longev. 2024;5(7):e464–479. doi: 10.1016/S2666-7568(24)00094-1. DOI: https://doi.org/10.1016/S2666-7568(24)00094-1

Ou R, Lin J, Liu K, Jiang Z, Wei Q, Hou Y, et al. Evolution of apathy in early Parkinson’s disease: a 4-years prospective cohort study. Front Aging Neurosci. 2021;12:620762. doi: 10.3389/fnagi.2020.620762. DOI: https://doi.org/10.3389/fnagi.2020.620762

Hommel ALAJ, Meinders MJ, Lorenzl S, Dodel R, Coelho M, Ferreira JJ, et al. The prevalence and determinants of neuropsychiatric symptoms in late‐stage parkinsonism. Mov Disord Clin Pract. 2020;7(5):531–542. doi: 10.1002/mdc3.12968. DOI: https://doi.org/10.1002/mdc3.12968

Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C. The epidemiology of Parkinson’s disease. Lancet. 2024;403(10423):283–292. doi: 10.1016/S0140-6736(23)01419-8. DOI: https://doi.org/10.1016/S0140-6736(23)01419-8

Parkinson’s Disease in Iraq [Internet]. [cited 2025 Jan 16]. Available from: https://www.worldlifeexpectancy.com/iraq-parkinson-disease

Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Park Dis. 2021;7(1):27. doi: 10.1038/s41531-021-00156-z. DOI: https://doi.org/10.1038/s41531-021-00156-z

Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol. 2021;17(10):601–620. doi: 10.1038/s41582-021-00541-5. DOI: https://doi.org/10.1038/s41582-021-00541-5

Becerra-Calixto A, Mukherjee A, Ramirez S, Sepulveda S, Sinha T, Al-Lahham R, et al. Lewy body-like pathology and loss of dopaminergic neurons in midbrain organoids derived from familial Parkinson’s disease patient. Cells. 2023;12(4):625. doi: 10.3390/cells12040625. DOI: https://doi.org/10.3390/cells12040625

Ramesh S, Arachchige ASPM. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023;10(3):200. doi: 10.3934/Neuroscience.2023017. DOI: https://doi.org/10.3934/Neuroscience.2023017

Dutta D, Paidi RK, Raha S, Roy A, Chandra S, Pahan K. Treadmill exercise reduces α-synuclein spreading via PPARα. Cell Rep. 2022;40(2). doi: 10.1016/j.celrep.2022.111058. DOI: https://doi.org/10.1016/j.celrep.2022.111058

El-Kattan MM, Rashed LA, Shazly SR, Ismail RS. Relation of serum level of tumor necrosis factor-alpha to cognitive functions in patients with Parkinson’s disease. Egypt J Neurol Psychiatr Neurosurg. 2022;58(1):25. doi: 10.1186/s41983-022-00460-2. DOI: https://doi.org/10.1186/s41983-022-00460-2

Hauser RA, LeWitt PA, Comella CL. On demand therapy for Parkinson’s disease patients: opportunities and choices. Postgrad Med. 2021;133(7):721–727. doi: 10.1080/00325481.2021.1936087. DOI: https://doi.org/10.1080/00325481.2021.1936087

Lees A, Tolosa E, Stocchi F, Ferreira JJ, Rascol O, Antonini A, et al. Optimizing levodopa therapy, when and how? Perspectives on the importance of delivery and the potential for an early combination approach. Expert Rev Neurother. 2023;23(1):15–24. doi: 10.1080/14737175.2023.2176220. DOI: https://doi.org/10.1080/14737175.2023.2176220

Gouda NA, Elkamhawy A, Cho J. Emerging therapeutic strategies for Parkinson’s disease and future prospects: A 2021 update. Biomedicines. 2022;10(2):371. doi: 10.3390/biomedicines10020371. DOI: https://doi.org/10.3390/biomedicines10020371

Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Jabir MS, Negm WA, et al. Metformin role in Parkinson’s disease: a double-sword effect. Mol Cell Biochem. 2024;479(4):975–991. doi: 10.1007/s11010-023-04771-7. DOI: https://doi.org/10.1007/s11010-023-04771-7

Petrie JR. Metformin beyond type 2 diabetes: Emerging and potential new indications. Diabetes, Obes Metab. 2024;26:31–41. doi: 10.7759/cureus.71730. DOI: https://doi.org/10.1111/dom.15756

Mohammed MM, Al-Shamma KJ, Jassim NA. Evaluation of the clinical use of metformin or pioglitazone in combination with meloxicam in patients with knee osteoarthritis; using knee injury and osteoarthritis outcome score. Iraqi J Pharm Sci. 2014;23(2):13–23. doi: 10.31351/vol23iss2pp13-23. DOI: https://doi.org/10.31351/vol23iss2pp13-23

Tawfeeq WM, Arif IS, Al-Sudani BT. Modulatory effects of metformin on farnesoid X receptor and specificity protein 1 in human pancreatic cancer BxPC-3 cells. Int J Drug Deliv Technol. doi: 10.25258/ijddt.12.4.37. DOI: https://doi.org/10.25258/ijddt.12.4.37

Mohammed AW, Arif IS, Jasim GA. The cytotoxic effect of metformin on RD cell line. Al Mustansiriyah J Pharm Sci. 2019;19(1):85–94. doi: 10.32947/ajps.v19i1.547. DOI: https://doi.org/10.32947/ajps.v19i1.547

Karim LZA, Arif IS, Saady FAA. Metabolomics of metformin’s cardioprotective effect in acute doxorubicin induced-cardiotoxicity in rats. Syst Rev Pharm. 2021;12:100–109. doi: 10.31838/srp.2021.3.18.

Adams C, Suescun J, Haque A, Block K, Chandra S, Ellmore TM, et al. Updated Parkinson’s disease motor subtypes classification and correlation to cerebrospinal homovanillic acid and 5-hydroxyindoleacetic acid levels. Clin Park Relat Disord. 2023;8:100187. doi: 10.1016/j.prdoa.2023.100187. DOI: https://doi.org/10.1016/j.prdoa.2023.100187

Garabadu D, Agrawal N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromol Med. 2020;22(2):314–330. doi: 10.1007/s12017-019-08590-2. DOI: https://doi.org/10.1007/s12017-019-08590-2

Himalian R, Singh SK, Singh MP. Ameliorative role of nutraceuticals on neurodegenerative diseases using the Drosophila melanogaster as a discovery model to define bioefficacy. J Am Nutr Assoc. 2022;41(5):511–539. doi: 10.1080/07315724.2021.1904305. DOI: https://doi.org/10.1080/07315724.2021.1904305

Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson’s disease. Lancet. 2024;403(10423):293–304. doi: 10.1016/S0140-6736(23)01478-2. DOI: https://doi.org/10.1016/S0140-6736(23)01478-2

Mao Q, Qin W zhi, Zhang A, Ye N. Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol Sin. 2020;41(4):471–482. doi: 10.1038/s41401-020-0365-y. DOI: https://doi.org/10.1038/s41401-020-0365-y

Innos J, Hickey MA. Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol. 2021;34(5):1223–1239. doi: 10.1021/acs.chemrestox.0c00522. DOI: https://doi.org/10.1021/acs.chemrestox.0c00522

Tao H, Liu Y, Hou Y. miRNA 384 5p regulates the progression of Parkinson’s disease by targeting SIRT1 in mice and SH SY5Y cell. Int J Mol Med. 2020;45(2):441–450. doi: 10.3892/ijmm.2019.4426. DOI: https://doi.org/10.3892/ijmm.2019.4426

Roy T, Chatterjee A, Swarnakar S. Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. Biochim Biophys Acta Mol Cell Res. 2023;1870(3):119417. doi: 10.1016/j.bbamcr.2022.119417. DOI: https://doi.org/10.1016/j.bbamcr.2022.119417

Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M. Rotenone-induced model of Parkinson’s disease: Beyond mitochondrial complex I inhibition. Mol Neurobiol. 2023;60(4):1929–1948. doi: 10.1007/s12035-022-03193-8. DOI: https://doi.org/10.1007/s12035-022-03193-8

González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 2021;599(7886):650–656. doi: 10.1038/s41586-021-04059-0. DOI: https://doi.org/10.1038/s41586-021-04059-0

Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Rahimi VB, Heidari R, et al. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother. 2023;165:115263. doi: 10.1016/j.biopha.2023.115263. DOI: https://doi.org/10.1016/j.biopha.2023.115263

AlShimemeri S, Fox SH, Visanji NP. Emerging drugs for the treatment of L-DOPA-induced dyskinesia: an update. Expert Opin Emerg Drugs. 2020;25(2):131–144. doi: 10.1080/14728214.2020.1763954. DOI: https://doi.org/10.1080/14728214.2020.1763954

Alharthy KM, Althurwi HN, Albaqami FF, Altharawi A, Alzarea SI, Al-Abbasi FA, et al. Barbigerone potentially alleviates rotenone-activated Parkinson’s disease in a rodent model by reducing oxidative stress and neuroinflammatory cytokines. ACS Omega. 2023;8(5):4608–4615. doi: 10.1021/acsomega.2c05837. DOI: https://doi.org/10.1021/acsomega.2c05837

Sorrentino ZA, Giasson BI. The emerging role of α-synuclein truncation in aggregation and disease. J Biol Chem. 2020;295(30):10224–10244. doi: 10.1074/jbc.REV120.011743. DOI: https://doi.org/10.1074/jbc.REV120.011743

Baggett D, Olson A, Parmar MS. Novel approaches targeting in α-Synuclein for Parkinson’s disease: Current progress and future directions for the disease-modifying therapies. Brain Disord. 2024;100163. doi: 10.1016/j.dscb.2024.100163. DOI: https://doi.org/10.1016/j.dscb.2024.100163

Agostini F, Masato A, Bubacco L, Bisaglia M. Metformin repurposing for Parkinson disease therapy: opportunities and challenges. Int J Mol Sci. 2021;23(1):398. doi: 10.3390/ijms23010398. DOI: https://doi.org/10.3390/ijms23010398

Saewanee N, Praputpittaya T, Malaiwong N, Chalorak P, Meemon K. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson’s disease. Neurosci Res. 2021;162:13–21. doi: 10.1016/j.neures.2019.12.017. DOI: https://doi.org/10.1016/j.neures.2019.12.017

Sardoiwala MN, Srivastava AK, Kaundal B, Karmakar S, Choudhury SR. Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-α-synuclein in Parkinson’s disease model. Nanomed Nanotechnol Biol Med. 2020;24:102088. doi: 10.1016/j.nano.2019.102088. DOI: https://doi.org/10.1016/j.nano.2019.102088

Pereira JB, Kumar A, Hall S, Palmqvist S, Stomrud E, Bali D, et al. DOPA decarboxylase is an emerging biomarker for Parkinsonian disorders including preclinical Lewy body disease. Nat Aging. 2023;3(10):1201–1209. doi: 10.1038/s43587-023-00478-y. DOI: https://doi.org/10.1038/s43587-023-00478-y

Müller T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2020;16(5):403–414. doi: 10.1080/17425255.2020.1750596. DOI: https://doi.org/10.1080/17425255.2020.1750596

Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I. Emerging neuroprotective effect of metformin in Parkinson’s disease: A molecular crosstalk. Pharmacol Res. 2020;152:104593. doi: 10.1016/j.phrs.2019.104593. DOI: https://doi.org/10.1016/j.phrs.2019.104593

Zhang D, Li S, Hou L, Jing L, Ruan Z, Peng B, et al. Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson’s disease model. J Neuroinflamm. 2021;18:1–116. doi: 10.1186/s12974-020-02065-z. DOI: https://doi.org/10.1186/s12974-020-02065-z

Rocha SM, Bantle CM, Aboellail T, Chatterjee D, Smeyne RJ, Tjalkens RB. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiol Dis. 2022;167:105685. doi: 10.1016/j.nbd.2022.105685 DOI: https://doi.org/10.1016/j.nbd.2022.105685

Jambi EJ, Alamri A, Afzal M, Al-Abbasi FA, Al-Qahtani SD, Almalki NAR, et al. 6-shogaol against 3-Nitropropionic acid-induced Huntington’s disease in rodents: Based on molecular docking/targeting pro-inflammatory cytokines/NF-κB-BDNF-Nrf2 pathway. PLoS One. 2024;19(7):e0305358. doi: 10.1371/journal.pone.0305358. DOI: https://doi.org/10.1371/journal.pone.0305358

Altharawi A, Alharthy KM, Althurwi HN, Albaqami FF, Alzarea SI, Al-Abbasi FA, et al. Europinidin inhibits rotenone-activated Parkinson’s disease in rodents by decreasing lipid peroxidation and inflammatory cytokines pathways. Molecules. 2022;27(21):7159. doi: 10.3390/molecules27217159. DOI: https://doi.org/10.3390/molecules27217159

Downloads

Published

2025-04-08

How to Cite

Al-Mammory, I. H., Jasim , G. A., & Abbas, W. A. (2025). Metformin Effect Against Rotenone-Induced Parkinsonism-Like Symptoms in a Mouse Model. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 8(2), 47–52. https://doi.org/10.54133/ajms.v8i2.1728

Issue

Section

Original article

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.