Enhancing the Antibacterial Activity of Ciprofloxacin Against Klebsiella pneumoniae by Inhibiting the AcrAB-TolC Efflux Pump System Using Phenylalanine-arginine β-Naphthylamide
DOI:
https://doi.org/10.54133/ajms.v8i1.1660Keywords:
AcrAB-TolC, Antibiotic resistance, Efflux pump, Efflux pump inhibitor, Klebsiella pneumoniaeAbstract
Background: Klebsiella pneumoniae shows varying degrees of resistance to antibiotic treatment; this resistance arises from multiple mechanisms, including the increased expression of multidrug (MDR) efflux pumps. An efflux pump inhibitor (EPI) is required to overcome this challenge and restore the effectiveness of antibiotics against the present MDR K. pneumoniae. Objective: To investigate the synergistic effect of the EPI Phenylalanine-Arginine β-Naphthylamide (PaβN) and Ciprofloxacin (CIP) on the expression of efflux pump genes AcrAB-TolC, isolated from CIP-resistant K. pneumoniae. Methods: 50 isolates of K. pneumoniae were collected from five different hospitals in Baghdad, Iraq. The minimum inhibitory concentration (MIC) values were determined for the CIP and CIP and PaßN combination using the broth micro-dilution method conducted on ten isolates resistant to CIP. Moreover, the expression level of AcrA, AcrB, and TolC genes from four selected isolates of K. pneumoniae were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Results: K. pneumoniae isolates showed that 40/50 (80%) were multidrug-resistant, and 54% of isolates were resistant to CIP. The MIC was reduced significantly from 2–8-fold in the isolates treated with PaβN and CIP compared to the CIP-treated group. The gene expression levels varied among the four selected isolates, with a slight decrease in AcrAB-TolC gene expression in some isolates treated with the CIP and PaβN combination compared to those treated with CIP alone. Conclusions: The promising finding is the effectiveness of synergistic combinations between the antibiotic and efflux pump inhibitors in eliminating resistance of MDR bacteria.
Downloads
References
Abd Al-Rhman RM, Al-Aubydi MA. Determination the relationship between some genetic aspects with the capsule formation for pathogenic Klebsiella pneumoniae serotypes K1 and K2. Iraqi J Sci. 2015;56(2):1385-1393.
Mustafa SM, Abdullah RM. Prevalence of quinolones resistance proteins encoding genes (qnr genes) and co-resistance with β-lactams among Klebsiella pneumoniae isolates from Iraqi patients. Baghdad Sci J. 2020;10;17(2). doi: 10.21123/bsj.2020.17.2.0406. DOI: https://doi.org/10.21123/bsj.2020.17.2.0406
Yaseen NN, Ahmed DA. Detection of mexB multidrug efflux gene in some local isolates of Pseudomonas aeruginosa. Iraqi J Sci. 2023;111–118. doi: 10.24996/ijs.2023.64.1.11. DOI: https://doi.org/10.24996/ijs.2023.64.1.11
Wand ME, Darby EM, Blair JMA, Sutton JM. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J Med Microbiol. 2022;71(3). doi: 10.1099/jmm.0.001496. DOI: https://doi.org/10.1099/jmm.0.001496
Sulaiman SD, Abdulhasan GA. Curcumin as efflux pump inhibitor agent for enhancement treatment against multidrug resistant Pseudomonas aeruginosa isolates. Iraqi J Sci. 2020;59:67. doi: 10.24996/ijs.2020.61.1.6. DOI: https://doi.org/10.24996/ijs.2020.61.1.6
Reza A, Sutton JM, Rahman K. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics. 2019;8(4):2. doi: 10.3390/antibiotics8040229. DOI: https://doi.org/10.3390/antibiotics8040229
Compagne N, Vieira Da Cruz A, Müller RT, Hartkoorn RC, Flipo M, Pos KM. Update on the discovery of efflux pump inhibitors against critical priority gram-negative bacteria. Antibiotics. 2023;12(1). doi: 10.3390/antibiotics12010180. DOI: https://doi.org/10.3390/antibiotics12010180
Pathania R, Sharma A, Gupta V. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res. 2019;149(2):129. doi: 10.4103/ijmr.IJMR_2079_17. DOI: https://doi.org/10.4103/ijmr.IJMR_2079_17
Duffey M, Jumde RP, da Costa RMA, Ropponen H, Blasco B, Piddock LJV. Extending the potency and lifespan of antibiotics: Inhibitors of Gram-negative bacterial efflux pumps. ACS Infect Dis. 2024;10(5):1458–1482. doi: 10.1021/acsinfecdis.4c00091. DOI: https://doi.org/10.1021/acsinfecdis.4c00091
Weinstein MP, Lewis JS. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J Clin Microbiol. 2020;58(3). doi: 10.1128/jcm.01864-19. DOI: https://doi.org/10.1128/JCM.01864-19
Ohikhena FU, Wintola OA, Afolayan AJ. Evaluation of the antibacterial and antifungal properties of Phragmanthera capitata (Sprengel) Balle (Loranthaceae), a mistletoe growing on rubber tree, using the dilution techniques. Sci World J. 2017;2017:1–8. doi: 10.1155/2017/9658598. DOI: https://doi.org/10.1155/2017/9658598
Khalid MY, Ghareeb AM. Influence of genetic variations of Mgrb and PhoQ system on colistin-resistant in Klebsiella pneumoniae clinical isolates. Egypt J Hosp Med. 2022;89(2):7403–7410. doi: 10.21608/ejhm.2022.274808. DOI: https://doi.org/10.21608/ejhm.2022.274808
SAS. 2018. Statistical Analysis System, User's Guide. Statistical. Version 9.6th ed. SAS. Inst. Inc. Cary. N.C. USA.
Tian P, Guo MJ, Li QQ, Li XF, Liu XQ, Kong QX, et al. Discovery of clinical isolation of drug-resistant Klebsiella pneumoniae with overexpression of OqxB efflux pump as the decisive drug resistance factor. Microbiol Spectrum. 2024;12(10). doi: 10.1128/spectrum.00122-24. DOI: https://doi.org/10.1128/spectrum.00122-24
Vera-Leiva A, Carrasco-Anabalón S, Lima CA, Villagra N, Domínguez M, Bello-Toledo H, et al. The efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) increases resistance to carbapenems in Chilean clinical isolates of KPC-producing Klebsiella pneumoniae. J Glob Antimicrob Resistance. 2018;12:73–76. doi: 10.1016/j.jgar.2017.12.003. DOI: https://doi.org/10.1016/j.jgar.2017.12.003
Blanco P, Hernando-Amado S, Reales-Calderon J, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms. 2016;4(1):14. doi: 10.3390/microorganisms4010014. DOI: https://doi.org/10.3390/microorganisms4010014
Dawan J, Ahn J. Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms. 2022;10(7):1385. doi: 10.3390/microorganisms10071385. DOI: https://doi.org/10.3390/microorganisms10071385
Ruiz C, Levy SB. Regulation of acrAB expression by cellular metabolites in Escherichia coli. J Antimicrob Chemother. 2013;69(2):390–399. doi: 10.1093/jac/dkt352. DOI: https://doi.org/10.1093/jac/dkt352
Al-Marzooq F, Ghazawi A, Daoud L, Tariq S. Boosting the antibacterial activity of azithromycin on multidrug-resistant Escherichia coli by efflux pump inhibition coupled with outer membrane permeabilization induced by phenylalanine-arginine β-naphthylamide. Int J Mol Sci. 2023;24(10):8662. doi: 1422-0067/24/10/8662. DOI: https://doi.org/10.3390/ijms24108662
Schuster S, Bohnert J, Vavra M, Rossen J, Kern W. Proof of an outer membrane target of the efflux inhibitor Phe-Arg-β-Naphthylamide from random mutagenesis. Molecules. 2019;24(3):470. doi: 10.3390/molecules24030470. DOI: https://doi.org/10.3390/molecules24030470

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).