Relationship between Antimicrobial-Resistant Bacterial Isolates and Biofilm Formation in Burn Patients
DOI:
https://doi.org/10.54133/ajms.v5i.263Keywords:
Biofilm, Burns, Emerging threats, Multidrug resistant bacteriaAbstract
Background: Biofilms are a serious problem and responsible for death from burns, and antibiotic-resistant bacteria threaten global public health due to high rates of pathogen infection. Objectives: To investigate the correlation between the formation of biofilms and the presence of antibiotic-resistant bacterial isolates in burn patients. Methods: 100 samples of swabs were collected from burn patients from January 2023 to June 2023. The grown colonies were identified based on traditional methods and the Vitec system, and multidrug resistance was determined when the isolates were resistant in three categories. A quantitative microtiter method was used to determine the formation of biofilms using ELISA. Results: From 100 burn samples, 83 bacterial isolates were obtained: Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Infection rates were highest for P. aeruginosa (67.5%), followed by S. aureus (16.9%). The results showed high resistance in the bacterial isolates, which showed 100% resistance to imipenem in P. aeruginosa. 100% of the E. coli and K. pneumoniae were MDR, followed by 83.92% for P. aeruginosa, 75% for A. baumannii, and 71% for S. aureus. All the isolates produced biofilm in varying proportions, with 80.35% in P. aeruginosa, followed by 100% moderate biofilm in E. coli, 100% weak biofilm in A. baumannii and K. pneumoniae, and moderate and weak biofilm in S. aureus. Conclusion: P. aeruginosa is the primary cause of burn contamination in hospitals, and all the isolates produced biofilm and exhibited high multi-drug resistance.
Downloads
References
Kelly EJ, Oliver MA, Carney BC, Shupp JW. Infection and burn Injury. Eur Burn J. 2022;3(1):165-179. doi: 10.3390/ebj3010014. DOI: https://doi.org/10.3390/ebj3010014
Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb Drug Resist. 2019;25(6):890–908. doi: 10.1089/mdr.2018.0319. DOI: https://doi.org/10.1089/mdr.2018.0319
Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis. 2017;70(5):485-489. doi: 10.7883/yoken.JJID.2016.405. DOI: https://doi.org/10.7883/yoken.JJID.2016.405
Williams FN, Lee JO. Pediatric burn infection. Surg Infect (Larchmt). 2021;22(1):54-57. doi: 10.1089/sur.2020.218. DOI: https://doi.org/10.1089/sur.2020.218
Trøstrup H, Lerche CJ, Christophersen LJ, Thomsen K, Jensen PØ, Hougen HP, et al. Chronic Pseudomonas aeruginosa biofilm infection impairs murine S100A8/A9 and neutrophil effector cytokines—implications for delayed wound closure? Pathog Dis. 2017;75(7):ftx068. doi: 10.1093/femspd/ftx068. DOI: https://doi.org/10.1093/femspd/ftx110
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:566325. doi: 10.3389/fmicb.2020.566325. DOI: https://doi.org/10.3389/fmicb.2020.566325
Kilic T, Bali EB. Biofilm control strategies in the light of biofilm-forming microorganisms. World J Microbiol Biotechnol. 2023;39(5):131. doi: 10.1007/s11274-023-03584-6. DOI: https://doi.org/10.1007/s11274-023-03584-6
Carbone A, Parrino B, Cusimano MG, Spanò V, Montalbano A, Barraja P, et al. New thiazole nortopsentin analogues inhibit bacterial biofilm formation. Mar Drugs. 2018;16(8):274. doi: 10.3390/md16080274. DOI: https://doi.org/10.3390/md16080274
Abo-Salem HM, Abd El Salam HA, Abdel-Aziem A, Abdel-Aziz MS, El-Sawy ER. Synthesis, molecular docking, and biofilm formation inhibitory activity of Bis(Indolyl)pyridines analogues of the marine alkaloid nortopsentin. Molecules. 2021;26. doi: 10.3390/molecules26144112. DOI: https://doi.org/10.3390/molecules26144112
Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water. 2020;12(12):3313. doi: 10.3390/w12123313. DOI: https://doi.org/10.3390/w12123313
James S. Lewis II, PharmD F. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute. 2023. p. 402.
Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-899. doi: 10.1111/j.1600-0463.2007.apm_630.x. DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
Downloading IBM SPSS Statistics 28.0. Available from: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-280
Organization WH. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization; 2017.
Shatti HH, Al-Saeed WM, Nader MI. Effect biofilm formation in Pseudomonas aeruginosa resistance to antibiotic. Mustansiriya Med J. 2022;21(1):14. doi: 10.4103/MJ.MJ_11_21. DOI: https://doi.org/10.4103/MJ.MJ_11_21
CharanKaur D, Khare AS. Biofilm formation and antibiotic susceptibility pattern in MRSA strains in a tertiary care rural hospital. Indian J Basic Appl Med Res. 2013;1(3):37-44.
Asati S, Chaudhary U. Prevalence of biofilm producing aerobic bacterial isolates in burn wound infections at a tertiary care hospital in northern India. Ann Burns Fire Disasters. 2017;30(1):39. PMID: 28592933.
Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8(1):1–10. doi: 10.1186/s13756-019-0533-3. DOI: https://doi.org/10.1186/s13756-019-0533-3
Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-543. doi: 10.1128/MMBR.00013-14. DOI: https://doi.org/10.1128/MMBR.00013-14
Monaam ZA. Effect of chitosan on biofilm formation of multi-drug resistant Pseudomonas aeruginosa and Staphylococcus aureus. Iraqi J Biotechnol. 2022;21(2).
Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML. Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol. 2017;83(3):e02508-2516. doi: 10.1128/aem.02508-16. DOI: https://doi.org/10.1128/AEM.02508-16
Kunwar A, Shrestha P, Shrestha S, Thapa S, Shrestha S, Amatya NM. Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Burn Open. 2021;5(3):125-129. doi: 10.1016/j.burnso.2021.04.001. DOI: https://doi.org/10.1016/j.burnso.2021.04.001
Baidya S, Sharma S, Mishra SK, Kattel HP, Parajuli K, Sherchand JB. Biofilm formation by pathogens causing ventilator-associated pneumonia at intensive care units in a tertiary care hospital: an armor for refuge. Biomed Res Int. 2021;2021. doi: 10.1155/2021/8817700. DOI: https://doi.org/10.1155/2021/8817700
Proma TT, Ahmed T. Evaluation of drug resistance before and after biofilm formation of bacteria causing wound infection and detection of their protease activity. Int J Infect. 2021;8(3). doi: 10.5812/iji.108247. DOI: https://doi.org/10.5812/iji.108247
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, et al. Beyond risk: Bacterial biofilms and their regulating approaches. Front Microbiol. 2020;11:1-20. doi: 10.3389/fmicb.2020.00928. DOI: https://doi.org/10.3389/fmicb.2020.00928
Chung PY, Toh YS. Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog Dis. 2014;70(3):231-239. doi: 10.1111/2049-632X.12141. DOI: https://doi.org/10.1111/2049-632X.12141
Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, et al. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep. 2019;9(1):3763. doi: 10.1038/s41598-019-40378-z. DOI: https://doi.org/10.1038/s41598-019-40378-z
Lu M, Wang S, Wang T, Hu S, Bhayana B, Ishii M, et al. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Sci Transl Med. 2021;13(575):eaba3571. doi: 10.1126/scitranslmed.aba3571. DOI: https://doi.org/10.1126/scitranslmed.aba3571
Yali G, Jing C, Chunjiang L, Cheng Z, Xiaoqiang L, Yizhi P. Comparison of pathogens and antibiotic resistance of burn patients in the burn ICU or in the common burn ward. Burns. 2014;40(3):402-407. doi: 10.1016/j.burns.2013.07.010. DOI: https://doi.org/10.1016/j.burns.2013.07.010

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).