تحضير وتقييم جل العين الموضعي بآلية تحفيز مزدوجة لتوصيل جاتيفلوكساسين وبيتاميثازون فوسفات الصوديوم
DOI:
https://doi.org/10.54133/ajms.v6i2.597الكلمات المفتاحية:
Betamethasone، Drug delivery، Gatifloxacin، Gellan gum، In situ ophthalmic gel، Poloxamerالملخص
تتمثل التحديات الرئيسية التي يواجهها علماء الصياغة في التوصيل البصري في الإزالة السريعة قبل القرنية والتطبيق المتعدد، خاصة مع الأدوية المضادة للميكروبات. تهدف هذه الدراسة إلى تطوير هلام عيني في الموقع يستخدم كلاً من الآليات المستحثة بالأيونات والحساسة للحرارة لتحقيق الجيل. تم تحضير صيغ تحتوي على نسب مختلفة من البولوكسامير 407 وصمغ الجيلان (F1-F24) ومقارنتها فيما يتعلق بدرجة حرارة التبلور، قدرة التبلور، زمن التبلور، ودراسة الإطلاق والتخلل. تم اختبار الصيغة المثلى فيما يتعلق بتساوي التوتر، ومضادات الميكروبات، والتهيج في الأرانب. تتراوح درجة الحموضة في التركيبات من 6.7 إلى 7.3. المستحضرات التي اجتازت اختبار درجة حرارة التبلور بنجاح هي F6 وF7 وF9 وF10. وتراوحت نسبة المحتوى الدوائي لكلا العقارين (F6، F7، F9، F10) من 98.64% إلى 99.95%. في الموقع، أظهرت المواد الهلامية (F6، F7، F9، وF10) سلوكًا ريولوجيًا متدفقًا كاذبًا أو ترقق القص، كما يتضح من انخفاض اللزوجة مع زيادة السرعة الزاوية. الصيغة المثالية (F7) التي تحتوي على 17% بولوكسامير و0.5% صمغ جيلان حصلت على 15 ثانية من وقت التبلور عند 34 درجة مئوية وبقيت على شكل هلام لمدة 270 دقيقة. لقد كان متساوي التوتر ولم تظهر خلايا الدم الحمراء أي تغيير في الحجم والشكل عند تطبيق الجل في الموقع. تم تمديد إطلاق كلا العقارين ولم يلاحظ أي تهيج في عين الأرنب عند اختباره على الحيوانات. من خلال تحسين فترة الإقامة قبل القرنية والتوافر البيولوجي للعين نتيجة للإدارة الأقل تواترا، يمكن اعتبار تركيبة الجل الجديدة في الموقع بديلا متفوقا لقطرات العين التقليدية من جاتيفلوكساسين وبيتاميثازون لالتهابات العين.
التنزيلات
المراجع
Gaballa SA, Kompella UB, Elgarhy O, Alqahtani AM, Pierscionek B, Alany RG, et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res. 2021;11(3):866-893. doi: 10.1007/s13346-020-00843-z. DOI: https://doi.org/10.1007/s13346-020-00843-z
Peter M, Panonnummal R. A Review on newer ocular drug delivery systems with an emphasis on glaucoma. Adv Pharm Bull. 2021;11(3):399-413. doi: 10.34172/apb.2021.048. DOI: https://doi.org/10.34172/apb.2021.048
Kalam MA, Sultana Y, Samad A, Ali A, Aqil M, Sharma M, et al. Gelrite‐based in vitro gelation ophthalmic drug delivery system of gatifloxacin. J Dispers Sci Technol. 2008;29(1):89-96. doi: 10.1080/01932690701688482. DOI: https://doi.org/10.1080/01932690701688482
Shaikh DA, Momin MMJDDL. Formulation and evaluation of ion-triggered in situ gel for effective ocular delivery of ciprofloxacin HCl and olopatadine HCl in combination. Drug Deliv Lett. 2024;14(1):49-66. doi: 10.2174/0122103031267809231128111259. DOI: https://doi.org/10.2174/0122103031267809231128111259
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1-22. doi: 10.1016/j.jconrel.2020.01.057. DOI: https://doi.org/10.1016/j.jconrel.2020.01.057
Tagalpallewar A, Rai P, Polshettiwar S, Manish W, Baheti A. Formulation, optimization and evaluation of ion triggered ophthalmic in situ gel. J Pharm Res Int. 2021;33(28A):58-77. doi: 10.9734/jpri/2021/v33i28A31511. DOI: https://doi.org/10.9734/jpri/2021/v33i28A31511
Saini R, Saini S, Singh G, Banerjee A. In situ gels-a new trends in ophthalmic drug delivery systems. Int J Pharm Sci Res. 2015;6:386-390.
Gözcü S, Polat HK, Gültekin Y, Ünal S, Karakuyu NF, Şafak EK, et al. Formulation of hesperidin-loaded in situ gel for ocular drug delivery: a comprehensive study. J Sci Food Agric. 2024. doi: 10.1002/jsfa.13407. DOI: https://doi.org/10.1002/jsfa.13407
Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals (Basel). 2021;14(11):1201. doi: 10.3390/ph14111201. DOI: https://doi.org/10.3390/ph14111201
Szalai B, Jójárt-Laczkovich O, Kovács A, Berkó S, Balogh GT, Katona G, Budai-Szűcs M. Design and optimization of in situ gelling mucoadhesive eye drops containing dexamethasone. Gels. 2022;8(9):561. doi: 10.3390/gels8090561. DOI: https://doi.org/10.3390/gels8090561
Padmasri B, Nagaraju R, Prasanth D. A comprehensive review on in situ gels. Int J Appl Pharm. 2020;12(6):24-33. doi: 10.22159/ijap.2020v12i6.38918. DOI: https://doi.org/10.22159/ijap.2020v12i6.38918
Dewan M, Sarkar G, Bhowmik M, Das B, Chattoapadhyay AK, Rana D, Chattopadhyay D. Effect of gellan gum on the thermogelation property and drug release profile of Poloxamer 407 based ophthalmic formulation. Int J Biol Macromol. 2017;102:258-265. doi: 10.1016/j.ijbiomac.2017.03.194. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.194
Yang H, Ding S, Fan D, Zhu Z, Fan Y, Li J, Wang D. Design and evaluation of a dual-sensitive in situ gel for the controlled release of pranoprofen. AAPS PharmSciTech. 2024;25(2):35. doi: 10.1208/s12249-024-02748-3. DOI: https://doi.org/10.1208/s12249-024-02748-3
Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. 2017;155:208-217. doi: 10.1016/j.carbpol.2016.08.073. DOI: https://doi.org/10.1016/j.carbpol.2016.08.073
Joshi PH, Youssef AAA, Ghonge M, Varner C, Tripathi S, Dudhipala N, et al. Gatifloxacin loaded nano lipid carriers for the management of bacterial conjunctivitis. Antibiotics (Basel). 2023;12(8):1318. doi: 10.3390/antibiotics12081318. DOI: https://doi.org/10.3390/antibiotics12081318
Sabry HS, Al-Shohani ADH, Mahmood SZ. Formulation and evaluation of levofloxacin and betamethasone ophthalmic emulgel. J Pharm Bioallied Sci. 2021;13(2):205-211. doi: 10.4103/jpbs.JPBS_338_20. DOI: https://doi.org/10.4103/jpbs.JPBS_338_20
Kolawole OM, Cook MT. In situ gelling drug delivery systems for topical drug delivery. Eur J Pharm Biopharm. 2023;184:36-49. doi: 10.1016/j.ejpb.2023.01.007. DOI: https://doi.org/10.1016/j.ejpb.2023.01.007
Huang Y, Yang N, Zhang Y, Hou J, Gao Y, Tian L, et al. The gelling behavior of gellan in the presence of different sodium salts. Int J Biol Macromol. 2021;193(Pt A):768-777. doi: 10.1016/j.ijbiomac.2021.10.173. DOI: https://doi.org/10.1016/j.ijbiomac.2021.10.173
Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on gellan gum: In vitro and in vivo evaluation. Drug Des Devel Ther. 2022;16:4109-4110. doi: 10.2147/DDDT.S153405. DOI: https://doi.org/10.2147/DDDT.S399707
Al-Bazzaz FY, Al-Kotaji M. Ophthalmic in-situ sustained gel of ciprofloxacin, preparation and evaluation study. Int J App Pharm. 2018;10(4):153-161. doi: 10.22159/ijap.2018v10i4.26885. DOI: https://doi.org/10.22159/ijap.2018v10i4.26885
Kalaria VJ, Saisivam S, Alshishani A, Aljariri Alhesan JS, Chakraborty S, Rahamathulla M. Design and evaluation of in situ gel eye drops containing nanoparticles of Gemifloxacin Mesylate. Drug Deliv. 2023;30(1):2185180. doi: 10.1080/10717544.2023.2185180. DOI: https://doi.org/10.1080/10717544.2023.2185180
Kapoor A, Gupta G. Optimization and characterization of ion activated ocular in-situ gel formulation for bacterial conjunctivitis. Int J Appl Pharm. 2020:182-91. doi: 10.22159/ijap.2020v12i4.37925. DOI: https://doi.org/10.22159/ijap.2020v12i4.37925
Amer Z, Mahdi Z, Alhamdany A. Formulation and evaluation of ocular in-situ gelling system containing ciprofloxacin and naproxen sodium. Res J Pharm Technol. 2021;14:91-95. doi: 10.5958/0974-360X.2021.00017.2. DOI: https://doi.org/10.5958/0974-360X.2021.00017.2
Mohammadi M, Patel K, Alaie SP, Shmueli RB, Besirli CG, Larson RG, et al. Injectable drug depot engineered to release multiple ophthalmic therapeutic agents with precise time profiles for postoperative treatment following ocular surgery. Acta Biomater. 2018;73:90-102. doi: 10.1016/j.actbio.2018.04.037. DOI: https://doi.org/10.1016/j.actbio.2018.04.037
Arora K, Singh LJJoPNR. Formulation development and characterization of in situ gel containing bimatoprost for the treatment of glaucoma. J Pharm Negative Results. 2023:1986-2001. doi: 10.47750/pnr.2023.14.02.247.
Majeed A, Khan N. Ocular in situ gel: An overview. J Drug Deliv Ther. 2019;9:337-347. doi: 10.22270/jddt.v9i1.2231. DOI: https://doi.org/10.22270/jddt.v9i1.2231
Abbas MN, Khan SA, Sadozai SK, Khalil IA, Anter A, Fouly ME, et al. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis. Polymers. 2022;14(6):1135. doi: 10.3390/polym14061135. DOI: https://doi.org/10.3390/polym14061135
Maddiboyina B, Jhawat V, Desu PK, Gandhi S, Nakkala RK, Singh S. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J Biomater Sci Polymer Ed. 2021;32(12):1584-1597. doi: 10.1080/09205063.2021.1927460. DOI: https://doi.org/10.1080/09205063.2021.1927460
Pramanik A, Sahoo R, Nanda A, Pattnaik K, Mallick S. Swelling kinetics and corneal hydration level of kaolinin-HPMC hydrogel film. Indian J Pharm Sci. 2020;82(2):306-314. DOI: https://doi.org/10.36468/pharmaceutical-sciences.651
Arthanari S, Mani G, Jang JH, Choi JO, Cho YH, Lee JH, et al. Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artif Cells Nanomed Biotechnol. 2016;44(3):847-852. doi: 10.3109/21691401.2014.986676. DOI: https://doi.org/10.3109/21691401.2014.986676
Zhang Y, Wu X, Li H, Du N, Song S, Hou W. Preparation and characterization of (betamethasone sodium phosphate intercalated layered double hydroxide)@liposome nanocomposites. Colloid Surfaces A: Physicochem Engineer Aspects. 2017;529:824-831. doi: 10.1016/j.colsurfa.2017.06.063. DOI: https://doi.org/10.1016/j.colsurfa.2017.06.063
Tassew NG, Laing ST, Aaronson J, de Jong I, Schuetz C, Lorget F. Tolerability assessment of formulation pH in New Zealand white rabbits following intravitreal administration. Toxicol Pathol. 2021;49(3):605-609. doi: 10.1177/0192623320969667. DOI: https://doi.org/10.1177/0192623320969667
Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv. 2018;15(10):1007-1019. doi: 10.1080/17425247.2018.1517741. DOI: https://doi.org/10.1080/17425247.2018.1517741
Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017;104:302-314. doi: 10.1016/j.ejps.2017.04.013. DOI: https://doi.org/10.1016/j.ejps.2017.04.013
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):859. doi: 10.3390/pharmaceutics12090859. DOI: https://doi.org/10.3390/pharmaceutics12090859
Vyas U, Gehalot N, Jain V, Mahajan SC. A Review on in situ gelling system for ophthalmic drug delivery. Curr Res Pharm Sci. 2021;11(4):98-106. doi: 10.24092/CRPS.2021.110402. DOI: https://doi.org/10.24092/CRPS.2021.110402
Sha G, Liu J, Jiang Z, Zhu M, Zhu Y, Gu C, et al. In situ gels: The next new frontier in ophthalmic drug delivery system. Polymer Adv Technol. 2023;34(8): 2646-2662. doi: 10.1002/pat.6079. DOI: https://doi.org/10.1002/pat.6079
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, et al. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev. 2023;200:115003. doi: 10.1016/j.addr.2023.115003. DOI: https://doi.org/10.1016/j.addr.2023.115003
Kurniawansyah IS, Rusdiana T, Sopyan I, Desy Arya IF, Wahab HA, Nurzanah D. Comparative study of in situ gel formulation based on the physico-chemical aspect: Systematic review. Gels. 2023;9(8):645. doi: 10.3390/gels9080645. DOI: https://doi.org/10.3390/gels9080645
Stachowiak N, Kowalonek J, Kozlowska J, Burkowska-But A. Stability studies, biodegradation tests, and mechanical properties of sodium alginate and gellan gum beads containing surfactant. Polymers. 2023;15(11):2568. doi: 10.3390/polym15112568. DOI: https://doi.org/10.3390/polym15112568
de Oliveira Cardoso VM, Kiraly VTR, Boni FI, Ferreira NN, Ferreira LMB, Pereira FMV, et al. Rational design of nanocarriers based on gellan gum/retrograded starch exploiting polyelectrolyte complexation and ionic cross-linking processes: A potential technological platform for oral delivery of bevacizumab. J Drug Deliv Sci Technol. 2021;66:102765. doi: 10.1016/j.jddst.2021.102765. DOI: https://doi.org/10.1016/j.jddst.2021.102765
Nagesh C, Patil M, Chandrashekhara S, Sutar R. A novel in situ gel for sustained ophthalmic delivery of ciprofloxacin hydrochloride and dexamethasone-design and characterization. Der Pharmacia Lett. 2012;4(3):821-827.
Almeida H, Amaral MH, Lobão P, Lobo JM. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today. 2014;19(4):400-412. doi: 10.1016/j.drudis.2013.10.001. DOI: https://doi.org/10.1016/j.drudis.2013.10.001

التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Al-Rafidain Journal of Medical Sciences

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).