Formulation Variables Influencing the Development of Ketoconazole Gastroretentive Drug Delivery System
DOI:
https://doi.org/10.54133/ajms.v7i1(Special).867Keywords:
Drug delivery, Gasteroretaintive, Mucoadhesive, Residence timeAbstract
Background: Ketoconazole (KZ) is categorized as class II according to the Biopharmaceutics Classification System (BSC) classification, which shows a strong pH-dependent solubility where its solubility is enhanced under an acidic medium (pH below 3). This strong pH dependence results in unpredictable absorption and a wide range of bioavailabilities. Objective: To prolong the gastric residence time of KZ’s tablet to enhance KZ’s solubility and hence its bioavailability for better therapeutic activity. Methods: To prepare mucoadhesive tablets, we use both direct and wet granulation methods. We employed various evaluation tests to assess the prepared tablets. These tests encompass a range of assessments, including weight variation, hardness, thickness, friability, disintegration test, swelling study, mucoadhesive strength study, and in vitro drug release studies. Results: The study found that polymer viscosity, as well as polymer concentration, have a significant effect on mucoadhesive strength and drug release, whereas diluent type has a non-significant influence on drug release. We selected Formula 7, which employs xanthan gum as a mucoadhesive polymer in a 1:1 drug polymer ratio, as the optimum formula because it provides an accepted physico-mechanical property and releases 87% of the drug over 8 hours. Conclusions: Gastric mucoadhesive tablets may be an effective method of delivering active ingredients, as they provide a favorable environment that enhances their dissolution by extending their duration in the stomach, thereby increasing their bioavailability.
Downloads
References
Dan N, Samanta K, Almoazen H. An update on pharmaceutical strategies for oral delivery of therapeutic peptides and proteins in adults and pediatrics. Children (Basel). 2020;7(12). doi: 10.3390/children7120307. DOI: https://doi.org/10.3390/children7120307
Sabar MH, Jaafar IS, Mohamed MBM. In situ gel as a platform for ketoconazole slow-release dosage form. Int J App Pharm. 2018;10(5):76-80. doi: 10.22159/ijap.2018v10i5.27849. DOI: https://doi.org/10.22159/ijap.2018v10i5.27849
Vinchurkar K, Sainy J, Khan MA, Mane S, Mishra DK, Dixit P. Features and facts of a gastroretentive drug delivery system- A review. Turk J Pharm Sci. 2022;19(4):476-487. doi: 10.4274/tjps.galenos.2021.44959. DOI: https://doi.org/10.4274/tjps.galenos.2021.44959
Kumar R, Islam T, Nurunnabi M. Mucoadhesive carriers for oral drug delivery. J Control Release. 2022;351:504-559. doi 10.1016/j.jconrel.2022.09.024. DOI: https://doi.org/10.1016/j.jconrel.2022.09.024
Tripathi J, Thapa P, Maharjan R, Jeong SH. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 2019;11(4). doi: 10.3390/pharmaceutics11040193. DOI: https://doi.org/10.3390/pharmaceutics11040193
Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv. 2018;15(10):1007-1019. doi: 10.1080/17425247.2018.1517741. DOI: https://doi.org/10.1080/17425247.2018.1517741
Bernkop-Schnürch A. Mucoadhesive polymers: Basics, strategies, and trends. Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials: CRC Press; 2017. p. 941-960. doi: 10.1081/E-EBPPC. DOI: https://doi.org/10.1081/E-EBPPC-120052253
Dudhipala N, Ay AA. Amelioration of ketoconazole in lipid nanoparticles for enhanced antifungal activity and bioavailability through oral administration for management of fungal infections. Chem Phys Lipids. 2020;232:104953. doi: 10.1016/j.chemphyslip.2020.104953. DOI: https://doi.org/10.1016/j.chemphyslip.2020.104953
Kara DD, Bangera PD, Mehta CH, Tanvi K, Rathnanand M. In silico screening as a tool to prepare drug-drug cocrystals of ibrutinib-ketoconazole: A strategy to enhance their solubility profiles and oral bioavailability. AAPS PharmSciTech. 2023;24(6):164. doi: 10.1208/s12249-023-02621-9. DOI: https://doi.org/10.1208/s12249-023-02621-9
Fung M, Be Rziņš KR, Suryanarayanan R. Physical stability and dissolution behavior of ketoconazole-organic acid coamorphous systems. Mol Pharm. 2018;15(5):1862-869. doi: 10.1021/acs.molpharmaceut.8b00035. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00035
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017 Nov 8. doi: 10.1093/nar/gkx1037. [cited 15-6-2024]. DOI: https://doi.org/10.1093/nar/gkx1037
Kataoka M, Fukahori M, Ikemura A, Kubota A, Higashino H, Sakuma S, et al. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur J Pharm Biopharm. 2016;101:103-111. doi: 10.1016/j.ejpb.2016.02.002. DOI: https://doi.org/10.1016/j.ejpb.2016.02.002
Jin H, Ngo HV, Park C, Lee BJ. Mucoadhesive buccal tablet of leuprolide and its fatty acid conjugate: Design, in vitro evaluation and formulation strategies. Int J Pharm. 2023;639:122963. doi: 10.1016/j.ijpharm.2023.122963. DOI: https://doi.org/10.1016/j.ijpharm.2023.122963
Macho O, Gabrišová Ľ, Guštafík A, Jezso K, Juriga M, Kabát J, et al. The influence of wet granulation parameters on the compaction behavior and tablet strength of a hydralazine powder mixture. Pharmaceutics. 2023;15(8). doi: 10.3390/pharmaceutics15082148. DOI: https://doi.org/10.3390/pharmaceutics15082148
Patil S, Talele GS. Gastroretentive mucoadhesive tablet of lafutidine for controlled release and enhanced bioavailability. Drug Deliv. 2015;22(3):312-319. doi: 10.3109/10717544.2013.877099. DOI: https://doi.org/10.3109/10717544.2013.877099
Chakraborty M, Ridgway C, Bawuah P, Markl D, Gane PAC, Ketolainen J, et al.Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index. Int J Pharm. 2017;525(1):85-91. doi: 10.1016/j.ijpharm.2017.03.093. DOI: https://doi.org/10.1016/j.ijpharm.2017.03.093
Mohylyuk V, Bandere D. High-speed tableting of high drug-loaded tablets prepared from fluid-bed granulated isoniazid. Pharmaceutics. 2023;15(4). doi: 10.3390/pharmaceutics15041236. DOI: https://doi.org/10.3390/pharmaceutics15041236
Razzaq S, Hanif S, Syed MA, Iqbal J, Hassan SS, Raza SA, et al. Development and evaluation of mucoadhesive buccal tablet containing metronidazole for the treatment of periodontitis and gingivitis. Pak J Pharm Sci. 2018;31(5):1903-1910. PMID: 30150187.
Javed QUA, Syed MA, Arshad R, Rahdar A, Irfan M, Raza SA, et al. Evaluation and optimization of prolonged-release mucoadhesive tablets of dexamethasone for wound healing: In vitro-in vivo profiling in healthy volunteers. Pharmaceutics. 2022;14(4). doi: 10.3390/pharmaceutics14040807. DOI: https://doi.org/10.3390/pharmaceutics14040807
Hussain A, Syed MA, Abbas N, Hanif S, Arshad MS, Bukhari NI, et al. Development of an ANN optimized mucoadhesive buccal tablet containing flurbiprofen and lidocaine for dental pain. Acta Pharm. 2016;66(2):245-256. doi: 10.1515/acph-2016-0020. DOI: https://doi.org/10.1515/acph-2016-0020
Sharma OP, Shah MV, Parikh DC, Mehta TA.Formulation optimization of gastroretentive drug delivery system for allopurinol using experimental design. Expert Opin Drug Deliv. 2015;12(4):513-524. doi: 10.1517/17425247.2014.944861. DOI: https://doi.org/10.1517/17425247.2014.944861
Li A, Khan IN, Khan IU, Yousaf AM, Shahzad Y. Gellan gum-based bilayer mucoadhesive films loaded with moxifloxacin hydrochloride and clove oil for possible treatment of periodontitis. Drug Des Devel Ther. 2021;15:3937-3952. doi: 10.2147/dddt.S328722. DOI: https://doi.org/10.2147/DDDT.S328722
Mohsin BM, Sabah IJ, Hamad MS, Hazem MJ, Furqan MA, Doaa ZA. Oily in situ gels as an alternative floating platform for ketoconazole release. Int J Res Pharm Sci. 2020;11(2):2638-2649. doi: doi.org/10.26452/ijrps.v11i2.2278. DOI: https://doi.org/10.26452/ijrps.v11i2.2278
Zeeshan F, Lin PY, Sheshala R. Application of similarity factor (f 2) and time required to drug release (t%) indicators for dissolution profiles comparison of paracetamol tablets. Indian J Pharm Edu Res. 2020;54(3). doi: 10.5530/ijper.54.3.114. DOI: https://doi.org/10.5530/ijper.54.3.114
Jiang WZ, Cai Y, Li HY. Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol. 2017;312:124-132. doi: 10.1016/j.powtec.2017.02.021. DOI: https://doi.org/10.1016/j.powtec.2017.02.021
The United State Pharmacopeia (USP) 30, NF28, 2010, USA: The United State Pharmacopia Convention Inc. 2010.
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci. 2021;288:102342. doi: 10.1016/j.cis.2020.102342. DOI: https://doi.org/10.1016/j.cis.2020.102342
Agarwal S, Murthy RS. Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets. Indian J Pharm Sci. 2015;77(6):705-714. doi: 10.4103/0250-474x.174993. DOI: https://doi.org/10.4103/0250-474X.174993
Ammanage A, Rodriques P, Kempwade A, Hiremath R. Formulation and evaluation of buccal films of piroxicam co-crystals. Future J Pharm Sci. 2020;6(1):16. doi: 10.1186/s43094-020-00033-1. DOI: https://doi.org/10.1186/s43094-020-00033-1
McArdle R, Hamill R. Utilisation of hydrocolloids in processed meat systems. In: Kerry JP, Kerry JF, (Eds.), Processed Meats: Woodhead Publishing; 2011. p. 243-69. doi: 10.1533/9780857092946.2.243. DOI: https://doi.org/10.1533/9780857092946.2.243
Argin S, Kofinas P, Lo YM. The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocoll. 2014;40:138-144. doi: 10.1016/j.foodhyd.2014.02.018. DOI: https://doi.org/10.1016/j.foodhyd.2014.02.018
Yu T, Andrews GP, Jones DS. Mucoadhesion and characterization of mucoadhesive properties. In: das Neves J, Sarmento B, (Eds.), Mucosal Delivery of Biopharmaceuticals: Biology, Challenges and Strategies. Boston, MA: Springer US; 2014. p. 35-58. doi: 10.1007/978-1-4614-9524-6_2. DOI: https://doi.org/10.1007/978-1-4614-9524-6_2
Saurí J, Zachariah M, Macovez R, Tamarit JL, Millán D, Suñé-Pou M, et al. Formulation and characterization of mucoadhesive controlled release matrix tablets of captopril. J Drug Deliv Sci Technol. 2017;42:215-226. doi: doi.org/10.1016/j.jddst.2017.03.009. DOI: https://doi.org/10.1016/j.jddst.2017.03.009
Bayer IS. Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Adv Mater Interfaces. 2022;9(18):2200211 doi: doi.org/10.1002/admi.202200211. DOI: https://doi.org/10.1002/admi.202200211
Kumar BP, Kavitha P, Devi KJ. Formulation design and evaluation of mucoadhesive buccal tablets of nitroglycerin. Int J Pharmacy Pharm Sci. 2014;6(7):251-259.
Boddupalli BM, Mohammed ZN, Nath RA, Banji D. Mucoadhesive drug delivery system: An overview. J Adv Pharm Technol Res. 2010;1(4):381-387. doi: 10.4103/0110-5558.76436. DOI: https://doi.org/10.4103/0110-5558.76436
Dalvadi H, Patel J, Rajput G, Muruganantham V, Jayakar B. Development and characterization of controlled release mucoadhesive tablets of captopril. Ars Pharmaceutica. 2011;52(2):31-37.
Jaipal A, Pandey MM, Charde SY, Raut PP, Prasanth KV, Prasad RG. Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: In-vitro and in-vivo pharmacokinetic studies. Saudi Pharm J. 2015;23(3):315-326. doi: 10.1016/j.jsps.2014.11.012. DOI: https://doi.org/10.1016/j.jsps.2014.11.012
Newton AM, Lakshmanan P. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile. Recent Pat Drug Deliv Formul. 2014;8(1):46-62. doi: 10.2174/1872211308666140225143926. DOI: https://doi.org/10.2174/1872211308666140225143926
Toews P, Bates J. Influence of drug and polymer molecular weight on release kinetics from HEMA and HPMA hydrogels. Sci Rep. 2023;13(1):16685. doi: 10.1038/s41598-023-42923-3. DOI: https://doi.org/10.1038/s41598-023-42923-3
Dadou SM, Antonijevic MD, Chowdhry BZ, Badwan AA, (Eds.), An overview of chitosan-xanthan gum matrices as controlled release drug carriers, IntechOpen. 2018. doi: 10.5772/intechopen.76038. DOI: https://doi.org/10.5772/intechopen.76038
Sultana A, Aghajanzadeh S, Thibault B, Ratti C, Khalloufi S. Exploring conventional and emerging dehydration technologies for slurry/liquid food matrices and their impact on porosity of powders: A comprehensive review. Comprehen Rev Food Sci Food Safety. 2024;23(3):e13347. doi: doi.org/10.1111/1541-4337.13347. DOI: https://doi.org/10.1111/1541-4337.13347
Ma'ali A, Naseef H, Qurt M, Abukhalil AD, Rabba AK, Sabri I. The preparation and evaluation of cyanocobalamin mucoadhesive sublingual tablets. Pharmaceuticals (Basel). 2023;16(10). doi: 10.3390/ph16101412. DOI: https://doi.org/10.3390/ph16101412
Rashmitha V, Rao YM, Pavani S. Formulation and evaluation of fenoverine tablets. Asian J Pharm Clin Res. 2021;175-180. doi: 10.22159/ajpcr.2021.v14i4.40999. DOI: https://doi.org/10.22159/ajpcr.2021.v14i4.40999
Ghosal K, Adak S, Agatemor C, Praveeen G, Kalarikkal N, Thomas S. Novel interpenetrating polymeric network based microbeads for delivery of poorly water soluble drug. J Polymer Res. 2020;27(4):98. doi: 10.1007/s10965-020-02077-6. DOI: https://doi.org/10.1007/s10965-020-02077-6

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).