Enhancement of a Modified Nano Restorative Mixture in Relation to Antibacterial Activity, MTT, and Spectroscopic Properties

المؤلفون

  • Maitha Sameer Kadhim Department of Pedodontics and Preventive Dentistry, Faculty of Dentistry, Al-Rafidain University College, Baghdad, Iraq
  • Shammaa Anees Alansari Department of Conservative Dentistry, College of Dentistry, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq https://orcid.org/0000-0002-5152-9663
  • Maysaa Sameer Kadhim Department of Laboratory Technique, Al-Rafidain University College, Baghdad, Iraq https://orcid.org/0009-0003-4127-2205
  • Hayder Hamed Abed Department of Basic Science, College of Dentistry, Mustansiriyah University, Baghdad, Iraq https://orcid.org/0000-0002-7345-392X

DOI:

https://doi.org/10.54133/ajms.v9i1.2155

الكلمات المفتاحية:

Caries، Enterococcus faecalis، Lactobacillus، Silver diamine fluoride، Streptococcus، Zinc nanoparticles

الملخص

Background: Evidence-based medical studies support the effectiveness of silver diamine fluoride (SDF) in removing or even suppressing caries lesions, considering it a non-invasive treatment modality in dental health care. Objective: Investigate the impact of zinc nanoparticles on the antibacterial activity, cytotoxicity, and optical properties of modified SDF. Methods: Mix zinc nanoparticles with SDF filling material in three variable ratios to create four experimental groups. The microbial sensitivity test for these groups was performed by measuring the diameters of the inhibition zones on the Muller-Hinton agar medium. Cytotoxicity assessment using the MTT test, by ISO-10993-5 guidelines, examined the cellular viability. A spectrophotometer analysis was used to evaluate the absorption in wavelengths ranging from 190 to 780 nm. Results: Revealed a dose-dependent efficacy of zinc nanoparticles with a better antibacterial effect than SDF alone; the cell bioavailability of zinc experimental groups remains within the acceptable measurements. Spectrophotometry was not correlated with adding zinc nanoparticles, especially within the visible light range. Conclusions: Mixtures of zinc nanoparticles with SDF were found to have more effective activity against the three human pathogens. At the same time, their cytotoxic pictures are acceptable but without a remarkable color change and aesthetic enhancement.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المراجع

Sharna N, Ramakrishnan M, Samuel V, Ravikumar D, Cheenglembi K, Anil S. Association between early childhood caries and quality of life: early childhood oral health impact scale and Pufa index. Dent J. 2019;7(4):95;1-2. doi: 10.3390/dj7040095. DOI: https://doi.org/10.3390/dj7040095

Naidu RS, Nunn JH, Pahel B, Niederman R. Promoting oral health in early childhood: the role of the family, community and health system in developing strategies for prevention and management of ECC. Front Public Health. 2021;9:716695. doi: 10.3389/fpubh.2021.716695. DOI: https://doi.org/10.3389/fpubh.2021.716695

Crystal YO, Janal MN, Hamilton DS, Niederman R. Parental perceptions and acceptance of silver diamine fluoride staining. J Am Dent Assoc. 2017;148(7):510-518. doi: 10.1016/j.adaj.2017.03.013. DOI: https://doi.org/10.1016/j.adaj.2017.03.013

Mei ML, Li QL, Chu CH, Lo EC, Samaranayake LP. Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob. 2013;12:4. doi: 10.1186/1476-0711-12-4. DOI: https://doi.org/10.1186/1476-0711-12-4

Mei ML, Ito L, Cao Y, Li QL, Lo EC, Chu CH. Inhibitory effect of silver diamine fluoride on dentine demineralisation and collagen degradation. J Dent. 2013;41(9):809-817. doi: 10.1016/j.jdent.2013.06.009. DOI: https://doi.org/10.1016/j.jdent.2013.06.009

Mei ML, Nudelman F, Marzec B, Walker JM, Lo ECM, Walls AW, et al. Formation of fluorohydroxyapatite with silver diamine fluoride. J Dent Res. 2017;96(10):1122-1128. doi: 10.1177/0022034517709738. DOI: https://doi.org/10.1177/0022034517709738

Mei ML, Chu CH, Low KH, Che CM, Lo EC. Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. mutans and L. acidophilus dual-species cariogenic biofilm. Med Oral Patol Oral Cir Bucal. 2013;18(6):e824-831. doi: 10.4317/medoral.18831. DOI: https://doi.org/10.4317/medoral.18831

Nishino M, Yoshida S, Sobue S, Kato J, Nishida M. Effect of topically applied ammoniacal silver fluoride on dental caries in children. J Osaka Univ Dent Sch. 1969;9:149-155. PMID: 4245744.

Yamaga R, Nishino M, Yoshida S, Yokomizo I. Diammine silver fluoride and its clinical application. J Osaka Univ Dent Sch. 1972;12:1-20. PMID: 4514730.

Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7:1063–1077. doi: 10.1517/17425247.2010.502560. DOI: https://doi.org/10.1517/17425247.2010.502560

Hassan AF, Abdul Raheem SM, Radhi H, Abed HH. Oral manifestation associated with biochemical and hematological changes in Iraqi end-stage renal failure patients. J Med Chem Sci. 2023;6(6):1352-1361. doi: 10.26655/JMCHEMSCI.2023.6.15. DOI: https://doi.org/10.26655/JMCHEMSCI.2023.6.15

Zhang Y, Yan Y, Xu X, Lu Y, Chen L, Li D, et al. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019;99:1021–1034. doi: 10.1016/j.msec.2019.01.120. DOI: https://doi.org/10.1016/j.msec.2019.01.120

Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, et al. Bioactive zinc (II) complex incorporated PCL/helatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci. 2021;160,105768. doi: 10.1016/j.ejps.2021.105768. DOI: https://doi.org/10.1016/j.ejps.2021.105768

Raheem SMA, Hassan AF, Ali AH, Radhi H, Abed HH. Assessment of hospital anxiety and depression scale associated with oral manifestations in hemodialysis Iraqi patients. Emerg Med Trauma Acute Care. 2023;3:10–14. doi: 10.5339/jemtac.2023.midc.2. DOI: https://doi.org/10.5339/jemtac.2023.midc.2

Fraga CG, Oteiza PI, Keen CL. Trace elements and human health. Mol Aspects Med. 2005;26:233–234. doi: 10.1016/j.mam.2005.07.014. DOI: https://doi.org/10.1016/j.mam.2005.07.014

Baek M, Chung HE, Yu J, Lee JA, Kim TH, JM, et al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomed. 2012;7:3081. doi: 10.2147/ijn.s32593. DOI: https://doi.org/10.2147/IJN.S32593

Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1062562. doi: 10.1155/2018/1062562. DOI: https://doi.org/10.1155/2018/1062562

Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7:219–242. doi: 10.1155/2018/1062562 DOI: https://doi.org/10.1007/s40820-015-0040-x

Rodgers J, Thibodeaux D, Cui X, Martin V, Watson M, Knowlton J. Instrumental and operational impacts on spectrophotometer color measurements. J Cotton Sci. 2008;12:287–297.

Nagireddy VR, Reddy D, Kondamadugu S, Puppala N, Mareddy AAC. Nanosilver fluoride—A paradigm shift for arrest in dental caries in primary teeth of schoolchildren: A randomized controlled clinical trial. Int J Clin Pediatr Dent. 2019;12:484–490. doi: 10.5005/jp-journals-10005-1703. DOI: https://doi.org/10.5005/jp-journals-10005-1703

Santos VE, Vasconcelos Filho A, Targino AG, Flores MA, Galembeck A, Caldas AF, et al. A new “silver-bullet” to treat caries in children—Nano silver fluoride: A randomised clinical trial. J Dent. 2014;42:945–951. doi: 10.1016/j.jdent.2014.05.017. DOI: https://doi.org/10.1016/j.jdent.2014.05.017

Bang SJ, Jun SK, Kim YJ, Ahn JY, Vu HT, Mandakhbayar N, et al. Characterization of physical and biological properties of a caries-arresting liquid containing copper doped bioglass nanoparticles. Pharmaceutics. 2022;14(6):1137. doi: 10.3390/pharmaceutics14061137. DOI: https://doi.org/10.3390/pharmaceutics14061137

Favaro JC, Detomini TR, Maia LP, Poli RC, Guiraldo RD, Lopes MB, et al. Anticaries agent based on silver nanoparticles and fluoride: Characterization and biological and remineralizing effects-An in vitro study. Int J Dent. 2022;2022:9483589. doi: 10.1155/2022/9483589. DOI: https://doi.org/10.1155/2022/9483589

Saleem I, Rana NF, Tanweer T, Arif W, Shafique I, Alotaibi AS, et al. Effectiveness of Se/ZnO NPs in enhancing the antibacterial activity of resin-based dental composites. Materials. 2022:15(7827). doi: 10.3390/ma15217827. DOI: https://doi.org/10.3390/ma15217827

Hassan N, Raid M, Ibrahim SH, Mahmoud K, Abulnoor BA, Hassan R. Antibacterial and cytotoxicity characteristics of experimental epoxy -based endodontic sealer loaded with silver gold nanoparticles: in vitro study. BDJ Open. 2024;10:81:1-6. doi: 10.1038/s41405-024-00266-9. DOI: https://doi.org/10.1038/s41405-024-00266-9

Mohamed HI. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26:143–151. doi: 10.7555/JBR.26.20120027. DOI: https://doi.org/10.7555/JBR.26.20120027

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. DOI: https://doi.org/10.1128/AEM.02218-06

Saffarpour M, Rahmani M, Tahriri M, Peymani A. Antimicrobial and bond strength properties of a dental adhesive containing zinc oxide nanoparticles. Braz J Oral Sci. 2016;15:66–69. doi: 10.20396/bjos.v15i1.8647127. DOI: https://doi.org/10.20396/bjos.v15i1.8647127

Jowkar Z, Farpour N, Koohpeima F, Mokhtari MJ, Shafiei F. Effect of silver nanoparticles, zinc oxide nanoparticles and titanium dioxide nanoparticles on microshear bond strength to enamel and dentin. J Contemp Dent Pract. 2018;19(11):1404-1411. PMID: 30602649. DOI: https://doi.org/10.5005/jp-journals-10024-2440

Gutiérrez MF, Alegría-Acevedo LF, Méndez-Bauer L, Bermudez J, Dávila Sánchez A, Buvinic S, et al. In vitro biological and adhesive properties of universal adhesive systems on sound and caries-affected dentine: 18 months. Int J Adhesion Adhesives. 2022;82:45–55. doi: 10.1016/j.ijadhadh.2022.103107. DOI: https://doi.org/10.1016/j.ijadhadh.2022.103107

Tahmasbi S, Mohamadian F, Hosseini S, Eftekhar L. A review on the applications of nanotechnology in orthodontics. Nanomed J. 2019;6(1):11-18. doi: 10.22038/nmj.2019.06.002.

Toledano M, Vallecillo-Rivas M, Osorio MT, Muñoz-Soto E, Toledano-Osorio M, Vallecillo C, et al. Zn-containing membranes for guided bone regeneration in dentistry. Polymers (Basel). 2021;13(11):1797. doi: 10.3390/polym13111797. DOI: https://doi.org/10.3390/polym13111797

Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009;20 Suppl 1:S235-241. doi: 10.1007/s10856-008-3548-5. DOI: https://doi.org/10.1007/s10856-008-3548-5

Almulhim A, Valdivia-Tapia AC, Rocha GR, Wu Y, Mao X, Alomeir N, et al. Effect of zinc on improving silver diamine fluoride-derived tooth discoloration in vitro. BMC Oral Health. 2024;24(1):1410. doi: 10.1186/s12903-024-05197-3. DOI: https://doi.org/10.1186/s12903-024-05197-3

التنزيلات

منشور

2025-07-28

كيفية الاقتباس

Kadhim, M. S., Alansari, S. A., Kadhim, M. S., & Abed, H. H. (2025). Enhancement of a Modified Nano Restorative Mixture in Relation to Antibacterial Activity, MTT, and Spectroscopic Properties. Al-Rafidain Journal of Medical Sciences, 9(1), 127–132. https://doi.org/10.54133/ajms.v9i1.2155

إصدار

القسم

Original article

المؤلفات المشابهة

1 2 > >> 

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.