Single Nucleotide Polymorphism in the IFNG rs1861494 Gene among a Subset of Iraqi Pediatric Patients with Gastroenteritis Co-infected with Cryptosporidium and Adenovirus

Authors

  • Maryam Sabri Ibrahim Department of Medical Microbiology, College of Medicine, Mustansiriyah, University, Baghdad, Iraq https://orcid.org/0000-0003-4044-512X
  • Fatima Hashim Abbas Department of Biology, College of Science, Al-Qasim Green University, Babylon, Iraq
  • Shakir Hammad Al-Alwany Department of Biology, College of Science, University of Babylon, Babylon, Iraq
  • Saad Hasan Mohammed Ali College of Dentistry, Al-Mustaqbal University, Babylon, Iraq
  • Ghassan Ali Fatal Department of Human Anatomy, College of Medicine, Mustansiriyah, University, Baghdad, Iraq https://orcid.org/0000-0002-2638-380X

DOI:

https://doi.org/10.54133/ajms.v6i2.844

Keywords:

Cryptosporidium, Gastroenteritis, HADV-7, IFNG rs1861494 Polymorphism, Pediatric patients

Abstract

Background: Research identifies enteric adenoviruses as the third most common cause of infantile gastroenteritis, while Cryptosporidium causes parasitic gastroenteritis. Many studies have revealed the role of IFN-γ in inflammation and autoimmune diseases. Objective: To investigate the IFNG rs1861494 gene polymorphism among Iraqi pediatric patients with gastroenteritis co-infected with cryptosporidium and adenovirus. Method: This case-control study enrolled 75 pediatric patients with severe gastroenteritis, whose ages ranged from 3–120 months and had a mean age of 30.64 months. The apparently healthy control (AHC) in this study included 25 pediatric individuals with a mean age of 27.64 months. We extracted DNA from stool specimens to further extract total genomic DNA, extract the human adenovirus (HADV) viral genome via PCR, and detect the IFNG rs1861494 polymorphism using the ARMS PCR technique. Results: The male gender percentage in patients and AHC groups was 54%, while the female counterpart was 46%. The positive PCR result for HADV7 was 28%, whereas the positive result for Cryptosporidium was 6%. In the studied groups, the GG genotype increased at a rate OR=2.67 as compared to the AG and AA genotypes. HADV7 and Cryptosporidium showed a strong correlation with the SNP IFNG rs1861494 results in gastroenteritis (r=0.968, p=0.007 and r=0.984, p=0.008). Conclusions: The identified enteric co-infection of Cryptosporidium and HADV-7, as well as the IFNG rs1861494 polymorphism, may shed light on possible pathogenic roles in gastroenteritis.

Downloads

Download data is not yet available.

References

Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, et al. Molecular and epidemiological characterization of human adenovirus and classic human astrovirus in children with acute diarrhea in Shanghai, 2017-2018. BMC Infect Dis. 2021;21(1):713. doi: 10.1186/s12879-021-06403-1.

Rajaiya J, Saha A, Zhou X, Chodosh J. Human adenovirus species D interactions with corneal stromal cells. Viruses. 2021;13(12):2505. doi: 10.3390/v13122505.

Carter BL, Chalmers RM, Davies AP. Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review. Parasit Vectors. 2020;13(1):443. doi: 10.1186/s13071-020-04308-7.

Zahedi A, Paparini A, Jian F, Robertson I, Ryan U. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. Int J Parasitol Parasites Wildl. 2015;5(1):88-109. doi: 10.1016/j.ijppaw.2015.12.001.

Ntunzwenimana JC, Boucher G, Paquette J, Gosselin H, Alikashani A, Morin N, et al. Functional screen of inflammatory bowel disease genes reveals key epithelial functions. Genome Med. 2021;13(1):181. doi: 10.1186/s13073-021-00996-7.

Gonsky R, Deem RL, Landers CJ, Haritunians T, Yang S, Targan SR. IFNG rs1861494 polymorphism is associated with IBD disease severity and functional changes in both IFNG methylation and protein secretion. Inflamm Bowel Dis. 2014;20(10):1794-1801. doi: 10.1097/MIB.0000000000000172.

Haritunians T, Taylor KD, Targan SR, Dubinsky M, Ippoliti A, Kwon S, et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm Bowel Dis. 2010;16(11):1830-1840. doi: 10.1002/ibd.21293.

Ludington JG, Ward HD. Systemic and mucosal immune responses to Cryptosporidium-vaccine development. Curr Trop Med Rep. 2015;2(3):171-180. doi: 10.1007/s40475-015-0054-y.

Kothavade RJ. Challenges in understanding the immunopathogenesis of Cryptosporidium infections in humans. Eur J Clin Microbiol Infect Dis. 2011;30(12):1461-1472. doi: 10.1007/s10096-011-1246-6.

Costa LB, JohnBull EA, Reeves JT, Sevilleja JE, Freire RS, Hoffman PS, et al. Cryptosporidium-malnutrition interactions: mucosal disruption, cytokines, and TLR signaling in a weaned murine model. J Parasitol. 2011;97(6):1113-1120. doi: 10.1645/GE-2848.1.

Jarman AF, Long SE, Robertson SE, Nasrin S, Alam NH, McGregor AJ, et al. Sex and Gender Differences in Acute Pediatric Diarrhea: A Secondary Analysis of the DHAKA Study. J Epidemiol Glob Health. 2018;8(1-2):42-47. doi: 10.2991/j.jegh.2018.08.102.

Esposito DH, Holman RC, Haberling DL, Tate JE, Podewils LJ, Glass RI, et al. Baseline estimates of diarrhea-associated mortality among United States children before rotavirus vaccine introduction. Pediatr Infect Dis J. 2011;30(11):942-947. doi: 10.1097/INF.0b013e3182254d19.

Flores AR, Szilagyi PG, Auinger P, Fisher SG. Estimated burden of rotavirus-associated diarrhea in ambulatory settings in the United States. Pediatrics. 2010;125(2):e191-198. doi: 10.1542/peds.2008-1262.

Khoury H, Ogilvie I, El Khoury AC, Duan Y, Goetghebeur MM. Burden of rotavirus gastroenteritis in the Middle Eastern and North African pediatric population. BMC Infect Dis. 2011;11:9. doi: 10.1186/1471-2334-11-9.

Kumthip K, Khamrin P, Ushijima H, Maneekarn N. Enteric and non-enteric adenoviruses associated with acute gastroenteritis in pediatric patients in Thailand, 2011 to 2017. PLoS One. 2019;14(8):e0220263. doi: 10.1371/journal.pone.0220263.

Pratte-Santos R, Miagostovich MP, Fumian TM, Maciel EL, Martins SA, Cassini ST, et al. High prevalence of enteric viruses associated with acute gastroenteritis in pediatric patients in a low-income area in Vitória, Southeastern Brazil. J Med Virol. 2019;91(5):744-750. doi: 10.1002/jmv.25392.

O'Brien E, Munir M, Marsh T, Heran M, Lesage G, Tarabara VV, et al. Diversity of DNA viruses in effluents of membrane bioreactors in Traverse City, MI (USA) and La Grande Motte (France). Water Res. 2017;111:338-345 doi: 10.1016/j.watres.2017.01.014.

Schlindwein AD, Rigotto C, Simões CMO, Barardi CRM. Detection of enteric viruses in sewage sludge and treated wastewater effluent. Water Sci Technol. 2010;61(2):537-544. doi: 10.2166/wst.2010.845.

Sanaei Dashti A, Ghahremani P, Hashempoor T, Karimi A. Molecular epidemiology of enteric adenovirus gastroenteritis in under-five-year-old children in Iran. Gastroenterol Res Pract. 2016;2016:2045697. doi: 10.1155/2016/2045697.

Fodha I, Chouikha A, Peenze I, De Beer M, Dewar J, Geyer A, et al. Identification of viral agents causing diarrhea among children in the Eastern Center of Tunisia. J Med Virol. 2006;78(9):1198-203. doi: 10.1002/jmv.20681.

Zaghloul MZ, El-Sahn SF, Galal ZA. Confection of rotavirus group A, norovirus and adenovirus in Egyptian children with gastroenteritis. Life Sci J. 2013;10(2):848-852.

Moyo SJ, Hanevik K, Blomberg B, Kommedal O, Nordbø SA, Maselle S, et al. Prevalence and molecular characterisation of human adenovirus in diarrhoeic children in Tanzania; a case control study. BMC Infect Dis. 2014;14:666. doi: 10.1186/s12879-014-0666-1.

Li W, Xiang W, Li C, Xu J, Zhou D, Shang S. Molecular epidemiology of rotavirus A and adenovirus among children with acute diarrhea in Hangzhou, China. Gut Pathog. 2020;12:19. doi: 10.1186/s13099-020-00359-4.

Imade PE, Eghafona NO. Viral agents of diarrhea in young children in two primary health centers in Edo State, Nigeria. Int J Microbiol. 2015;2015:685821. doi: 10.1155/2015/685821.

Gelaw A, Pietsch C, Liebert UG. Genetic diversity of human adenovirus and human astrovirus in children with acute gastroenteritis in Northwest Ethiopia. Arch Virol. 2019;164(12):2985-2993. doi: 10.1007/s00705-019-04421-8.

Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol. (2017);8:14-32. doi: 10.1016/j.fawpar.2017.09.002.

Lebbad M, Winiecka-Krusnell J, Stensvold CR, Beser J. High diversity of Cryptosporidium species and subtypes identified in cryptosporidiosis acquired in Sweden and abroad. Pathogens. 2021 ;10(5):523. doi: 10.3390/pathogens10050523.

Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151-1210. doi: 10.1016/S0140-6736(17)32152-9.

Peresi E, Oliveira LR, da Silva WL, da Costa EA, Araujo JP, Ayres JA, et al. Cytokine polymorphisms, their influence and levels in Brazilian patients with pulmonary tuberculosis during antituberculosis treatment. Tuberc Res Treat. 2013;2013:285094. doi: 10.1155/2013/285094.

Downloads

Published

2024-06-09

How to Cite

Ibrahim, M. S., Abbas, F. H., Al-Alwany, S. H., Mohammed Ali, S. H., & Fatal, G. A. (2024). Single Nucleotide Polymorphism in the IFNG rs1861494 Gene among a Subset of Iraqi Pediatric Patients with Gastroenteritis Co-infected with Cryptosporidium and Adenovirus. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 6(2), 143–148. https://doi.org/10.54133/ajms.v6i2.844

Issue

Section

Original article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.