Clinical Characteristics and Therapeutic Management of Osteogenesis Imperfecta in Iraqi Children
DOI:
https://doi.org/10.54133/ajms.v5i1S.416Keywords:
Children, Bisphosphonates, Osteogenesis imperfecta, PamidronateAbstract
Background: Osteogenesis imperfecta (OI) is a rare congenital condition that results in bone fragility, recurrent fractures, and various extra-skeletal manifestations. Currently, intravenous bisphosphonate is the mainstay of medical treatment in OI. Objective: To identify the effect of current management strategies on Iraqi children diagnosed with OI. Methods: A retrospective study enrolled OI patients who were registered in Central Child Teaching Hospital, Baghdad, Iraq, from January 2015 to December 2022. We enrolled confirmed OI cases (either clinically and/or radiologically) who received cyclic pamidronate therapy for at least 3 cycles. They neither received other types of bisphosphonates nor underwent surgical intervention. Results: A total of 52 cases of OI had been identified, but only 36 patients were eligible for the current study. The mean age of the patients was 6.64±4.22 years. A statistically significant drop in the annual fracture rate in OI patients who received intravenous pamidronate cycles was seen, along with a significant rise in weight for age Z-score, lumbar spine bone mineral density DEXA Z-score, and alkaline phosphate levels. No significant improvement was documented in height for age Z-score in OI patients. Conclusions: Intravenous pamidronate cycles for Iraqi children with osteogenesis imperfecta work to lower their risk of breaking bones every year and raise their weight, lumbar spine bone mineral density, and alkaline phosphate levels. Pamidronate did not result in an improvement in the height of OI children.
Downloads
References
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis imperfecta: Mechanisms and signaling pathways connecting classical and rare OI types. Endocr Rev. 2022;43(1):61-90. doi: 10.1210/endrev/bnab017. DOI: https://doi.org/10.1210/endrev/bnab017
Neri Morales C, Silva Amaro A, Cardona JD, Bendeck JL, Cifuentes Gaitan K, Ferrer Valencia V, et al. Osteogenesis imperfecta: A case series and literature review. Cureus. 2023;15(1):e33864. doi: 10.7759/cureus.33864. DOI: https://doi.org/10.7759/cureus.33864
Hidalgo Perea S, Green DW. Osteogenesis imperfecta: treatment and surgical management. Curr Opin Pediatr. 2021;33(1):74-78. doi: 10.1097/MOP.0000000000000968. DOI: https://doi.org/10.1097/MOP.0000000000000968
Ralston SH, Gaston MS. Management of osteogenesis imperfecta. Front Endocrinol (Lausanne). 2020;10:924. doi: 10.3389/fendo.2019.00924. DOI: https://doi.org/10.3389/fendo.2019.00924
Monti E, Mottes M, Fraschini P, Brunelli P, Forlino A, Venturi G, et al. Current and emerging treatments for the management of osteogenesis imperfecta. Ther Clin Risk Manag. 2010;6:367-81. doi: 10.2147/tcrm.s5932. DOI: https://doi.org/10.2147/TCRM.S5932
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine animal models in osteogenesis imperfecta: The quest for improving the quality of life. Int J Mol Sci. 2022;24(1):184. doi: 10.3390/ijms24010184. DOI: https://doi.org/10.3390/ijms24010184
Pileggi VN, Scalize AR, Camelo Junior JS. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta. Rev Paul Pediatr. 2016;34(4):484-488. doi: 10.1016/j.rpped.2016.02.005. DOI: https://doi.org/10.1016/j.rppede.2016.03.010
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol. 2020;183(4):R95-R106. doi: 10.1530/EJE-20-0299. DOI: https://doi.org/10.1530/EJE-20-0299
Muñoz-Garcia J, Heymann D, Giurgea I, Legendre M, Amselem S, Castañeda B, et al. Pharmacological options in the treatment of osteogenesis imperfecta: A comprehensive review of clinical and potential alternatives. Biochem Pharmacol. 2023;213:115584. doi: 10.1016/j.bcp.2023.115584. DOI: https://doi.org/10.1016/j.bcp.2023.115584
Marginean O, Tamasanu RC, Mang N, Mozos I, Brad GF. Therapy with pamidronate in children with osteogenesis imperfecta. Drug Des Devel Ther. 2017;11:2507-2515. doi: 10.2147/DDDT.S141075. DOI: https://doi.org/10.2147/DDDT.S141075
Cho TJ, Ko JM, Kim H, Shin HI, Yoo WJ, Shin CH. Management of osteogenesis imperfecta: A multidisciplinary comprehensive approach. Clin Orthop Surg. 2020;12(4):417-429. doi: 10.4055/cios20060. DOI: https://doi.org/10.4055/cios20060
Kok DH, Sakkers RJ, Janse AJ, Pruijs HE, Verbout AJ, Castelein RM, et al. Quality of life in children with osteogenesis imperfecta treated with oral bisphosphonates (Olpadronate): a 2-year randomized placebo-controlled trial. Eur J Pediatr. 2007;166(11):1155-1161. doi: 10.1007/s00431-006-0399-2. DOI: https://doi.org/10.1007/s00431-006-0399-2
Letocha AD, Cintas HL, Troendle JF, Reynolds JC, Cann CE, Chernoff EJ, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Miner Res. 2005;20(6):977-986. doi: 10.1359/JBMR.050109. DOI: https://doi.org/10.1359/JBMR.050109
Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947-952. doi: 10.1056/NEJM199810013391402. DOI: https://doi.org/10.1056/NEJM199810013391402
Adler RA, El-Hajj Fuleihan G, Bauer DC, Camacho PM, Clarke BL, Clines GA, et al. Managing osteoporosis in patients on long-term bisphosphonate treatment: Report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31(1):16-35. doi: 10.1002/jbmr.2708. DOI: https://doi.org/10.1002/jbmr.2708
Papri N, Islam Z, Leonhard SE, Mohammad QD, Endtz HP, Jacobs BC. Guillain-Barré syndrome in low-income and middle-income countries: challenges and prospects. Nat Rev Neurol. 2021;17(5):285-296. doi: 10.1038/s41582-021-00467-y. DOI: https://doi.org/10.1038/s41582-021-00467-y
Al Mosawi AJ. Ekman-Lobstein syndrome: Clinical, radiologic features, and the therapeutic challenge. Glob J Orthoped Res. 2019;2(1):1-4. doi: 10.33552/GJOR.2019.02.000529. DOI: https://doi.org/10.33552/GJOR.2019.02.000529
El Maghraoui A, Roux C. DXA scanning in clinical practice. QJM. 2008;101(8):605-617. doi: 10.1093/qjmed/hcn022. DOI: https://doi.org/10.1093/qjmed/hcn022
Sheu A, Diamond T. Bone mineral density: testing for osteoporosis. Aust Prescr. 2016;39(2):35-39. doi: 10.18773/austprescr.2016.020. DOI: https://doi.org/10.18773/austprescr.2016.020
Mrosk J, Bhavani GS, Shah H, Hecht J, Krüger U, Shukla A, et al. Diagnostic strategies and genotype-phenotype correlation in a large Indian cohort of osteogenesis imperfecta. Bone. 2018;110:368-377. doi: 10.1016/j.bone.2018.02.029. DOI: https://doi.org/10.1016/j.bone.2018.02.029
Al-Rahal NK. Inherited bleeding disorders in Iraq and consanguineous marriage. Int J Hematol Oncol Stem Cell Res. 2018;12(4):273-281. PMID: 30774827. DOI: https://doi.org/10.18502/ijhoscr.v12i4.105
Holtz AP, Souza LT, Ribeiro EM, Acosta AX, Lago RMRS, Simoni G, et al. Genetic analysis of osteogenesis imperfecta in a large Brazilian cohort. Bone. 2023;169:116683. doi: 10.1016/j.bone.2023.116683. DOI: https://doi.org/10.1016/j.bone.2023.116683
Akram NN, Abed MA. Indications and outcome of albumin infusion in a neonatal population: A cross sectional study. J Med Chem Sci. 2022;5(1)129-136. doi:10.26655/JMCHEMSCI.2022.1.14. DOI: https://doi.org/10.26655/JMCHEMSCI.2022.1.14
Greeley CS, Donaruma-Kwoh M, Vettimattam M, Lobo C, Williard C, Mazur L. Fractures at diagnosis in infants and children with osteogenesis imperfecta. J Pediatr Orthoped. 2013;33(1):32-36. doi: 10.1097/BPO.0b013e318279c55d. DOI: https://doi.org/10.1097/BPO.0b013e318279c55d
Pinheiro B, Zambrano MB, Vanz AP, Brizola E, Souza LT, Félix TM. Cyclic pamidronate treatment for osteogenesis imperfecta: Report from a Brazilian reference center. Genet Mol Biol. 2019;42(1 suppl 1):252-260. doi: 10.1590/1678-4685-GMB-2018-0097. DOI: https://doi.org/10.1590/1678-4685-gmb-2018-0097
Ward LM, Rauch F, Whyte MP, D'Astous J, Gates PE, Grogan D, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96(2):355-364. doi: 10.1210/jc.2010-0636. DOI: https://doi.org/10.1210/jc.2010-0636
Bishop N, Harrison R, Ahmed F, Shaw N, Eastell R, Campbell M, et al. A randomized, controlled dose-ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Miner Res. 2010;25(1):32-40. doi: 10.1359/jbmr.090712. DOI: https://doi.org/10.1359/jbmr.090712
Kusumi K, Ayoob R, Bowden SA, Ingraham S, Mahan JD. Beneficial effects of intravenous pamidronate treatment in children with osteogenesis imperfecta under 24 months of age. J Bone Miner Metab. 2015;33(5):560-568. doi: 10.1007/s00774-014-0618-2. DOI: https://doi.org/10.1007/s00774-014-0618-2
Aström E, Söderhäll S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child. 2002;86(5):356-364. doi: 10.1136/adc.86.5.356. DOI: https://doi.org/10.1136/adc.86.5.356
Forin V, Arabi A, Guigonis V, Filipe G, Bensman A, Roux C. Benefits of pamidronate in children with osteogenesis imperfecta: an open prospective study. Joint Bone Spine. 2005;72(4):313-318. doi: 10.1016/j.jbspin.2004.08.011. DOI: https://doi.org/10.1016/j.jbspin.2004.08.011
Palomo T, Fassier F, Ouellet J, Sato A, Montpetit K, Glorieux FH, et al. Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: Skeletal findings during follow up throughout the growing years. J Bone Miner Res. 2015;30(12):2150-2157. doi: 10.1002/jbmr.2567. DOI: https://doi.org/10.1002/jbmr.2567
Zeitlin L, Rauch F, Plotkin H, Glorieux FH. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics. 2003;111(5 Pt 1):1030-1036. doi: 10.1542/peds.111.5.1030. DOI: https://doi.org/10.1542/peds.111.5.1030
Shah I, Goel A, Shetty NS, Johari A. Intravenous pamidronate for treatment of osteogenesis imperfecta in Indian children. Trop Doct. 2021;51(2):271-274. doi: 10.1177/0049475520982694. DOI: https://doi.org/10.1177/0049475520982694
Salehpour S, Tavakkoli S. Cyclic pamidronate therapy in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2010;23(1-2):73-80. doi: 10.1515/jpem.2010.23.1-2.73. DOI: https://doi.org/10.1515/JPEM.2010.23.1-2.73
Chagas CE, Roque JP, Santarosa Emo Peters B, Lazaretti-Castro M, Martini LA. Do patients with osteogenesis imperfecta need individualized nutritional support? Nutrition. 2012;28(2):138-142. doi: 10.1016/j.nut.2011.04.003 DOI: https://doi.org/10.1016/j.nut.2011.04.003
Sala A, Barr RD. Osteopenia and cancer in children and adolescents: The fragility of success. Cancer. 2007;109:1420–1451. doi: 10.1002/cncr.22546. DOI: https://doi.org/10.1002/cncr.22546
DiMeglio LA, Ford L, McClintock C, Peacock M. Intravenous pamidronate treatment of children under 36 months of age with osteogenesis imperfecta. Bone. 2004;35(5):1038-1045. doi: 10.1016/j.bone.2004.07.003. DOI: https://doi.org/10.1016/j.bone.2004.07.003
Hwang S, Seo M, Lim D, Choi MS, Park JW, Nam K. Bilateral atypical femoral fractures after bisphosphonate treatment for osteoporosis: A literature review. J Clin Med. 2023;12(3):1038. doi: 10.3390/jcm12031038. DOI: https://doi.org/10.3390/jcm12031038
Simm PJ, Biggin A, Zacharin MR, Rodda CP, Tham E, Siafarikas A, et al. Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health. 2018;54(3):223-233. doi: 10.1111/jpc.13768. DOI: https://doi.org/10.1111/jpc.13768
Hill CL, Baird WO, Walters SJ. Quality of life in children and adolescents with Osteogenesis Imperfecta: a qualitative interview based study. Health Qual Life Outcomes. 2014;12:54. doi: 10.1186/1477-7525-12-54. DOI: https://doi.org/10.1186/1477-7525-12-54
Akram NN, Nori W, Al Qaissi KW, Abdulrahman Hadi BA. Multi-systemic inflammatory syndrome in childhood (MIS-C): A review article. J Pak Med Assoc. 2021 Dec;71(Suppl 9)(12):S70-S73. PMID: 35130265.
Tuttle KR. Impact of the COVID-19 pandemic on clinical research. Nat Rev Nephrol. 2020;16(10):562-564. doi: 10.1038/s41581-020-00336-9. DOI: https://doi.org/10.1038/s41581-020-00336-9
.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).