Electrocardiographic T-Wave Changes in Patients with Liver Cirrhosis: A Marker of Decompensation

Authors

DOI:

https://doi.org/10.54133/ajms.v9i2.2489

Keywords:

Child-Pugh score, Cirrhotic cardiomyopathy, Diastolic dysfunction, Electrocardiographic changes, Liver cirrhosis

Abstract

Background: Cirrhotic cardiomyopathy is an underrecognized complication that affects nearly half of patients with liver cirrhosis. Electrocardiographic T-wave changes and diastolic dysfunction may serve as an early sign of cardiac involvement. Objectives: To investigate the association between electrocardiographic and echocardiographic changes and/or the severity of liver cirrhosis, as well as estimated short-term mortality. Methods: This was an observational cross-sectional study conducted at Baghdad Teaching Hospital. Sixty patients with liver cirrhosis due to hepatitis B or hepatitis C viruses were enrolled in the study. Patients were grouped into three categories based on their Child-Pugh score and categorized into two groups based on the Model for End-stage Liver Disease (MELD-Na) score. We assess T-wave alterations in the ECG, together with systolic and diastolic dysfunction, to determine their correlation with the severity of liver cirrhosis and the likelihood of mortality within the subsequent months. Results: The average age of patients was 54.06 years. Seventeen patients had compensated liver cirrhosis, while 43 had decompensated disease (20 with category B and 23 with category C). There is a significant prolongation of QTc, prolongation of Tpe, an increase in the Tpe/QTc ratio, a reduction in left ventricle ejection fraction, and an increase in the percentage of diastolic dysfunction among patients with decompensated liver cirrhosis (Child-Pugh class B and C). Conclusions: Cirrhotic cardiomyopathy is related to the decompensation of liver cirrhosis. T-wave changes can be used as a marker of liver decompensation.

Downloads

Download data is not yet available.

References

Liu H, Ryu D, Hwang S, Lee SS. Therapies for cirrhotic cardiomyopathy: Current perspectives and future possibilities. Int J Mol Sci. 2024;25(11):5849. doi: 10.3390/ijms25115849. DOI: https://doi.org/10.3390/ijms25115849

Carvalho MVH, Kroll PC, Kroll RTM, Carvalho VN. Cirrhotic cardiomyopathy: the liver affects the heart. Braz J Med Biol Res. 2019;52(2):e7809. doi: 10.1590/1414-431X20187809. DOI: https://doi.org/10.1590/1414-431x20187809

Liu H, Nguyen HH, Yoon KT, Lee SS. Pathogenic mechanisms underlying cirrhotic cardiomyopathy. Front Netw Physiol. 2022;2:849253. doi: 10.3389/fnetp.2022.849253. DOI: https://doi.org/10.3389/fnetp.2022.849253

Izzy M, VanWagner LB, Lin G, Altieri M, Findlay JY, Oh JK, et al. Cirrhotic cardiomyopathy consortium. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology. 2019;71:334–345. doi: 10.1002/hep.30875. Epub 2019 Oct 11. DOI: https://doi.org/10.1002/hep.30875

Zardi EM, Zardi DM, Chin D, Sonnino C, Dobrina A, Abbate A. Cirrhotic cardiomyopathy in the pre- and post-liver transplantation phase. J Cardiol. 2016;67(2):125–130. doi: 10.1016/j.jjcc.2015.04.016. DOI: https://doi.org/10.1016/j.jjcc.2015.04.016

Zardi EM, Abbate A, Zardi DM, Dobrina A, Margiotta D, Van Tassell BW, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56(7):539-549. doi: 10.1016/j.jacc.2009.12.075. DOI: https://doi.org/10.1016/j.jacc.2009.12.075

Izzy MJ, VanWagner LB. Current concepts of cirrhotic cardiomyopathy. Clin Liver Dis. 2021;25(2):471-481. doi: 10.1016/j.cld.2021.01.012. DOI: https://doi.org/10.1016/j.cld.2021.01.012

Bernardi M, Maggioli C, Dibra V, Zaccherini G. QT interval prolongation in liver cirrhosis: Innocent bystander or serious threat? Expert Rev Gastroenterol Hepatol. 2012;6:57-66. doi: 10.1586/egh.11.86. DOI: https://doi.org/10.1586/egh.11.86

Lee W, Vandenberk B, Raj SR, Lee SS. Prolonged QT interval in cirrhosis: twisting time? Gut Liver. 2022;16(6):849–860. doi: 10.5009/gnl210537. DOI: https://doi.org/10.5009/gnl210537

Mozos I. Arrhythmia risk in liver cirrhosis. World J Hepatol. 2015;7:662–672. doi: 10.4254/wjh.v7.i4.662. DOI: https://doi.org/10.4254/wjh.v7.i4.662

Bokarvadia R, Jain M, Kedarisetty C, Varghese J, Venkataraman J. Prevalence and clinical presentation of cirrhotic cardiomyopathy: A single centre experience from southern India. Indian J Gastroenterol. 2019;38(2):150-157. doi: 10.1007/s12664-019-00946-7. DOI: https://doi.org/10.1007/s12664-019-00946-7

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–171. doi: 10.1016/j.jhep.2018.09.014. DOI: https://doi.org/10.1016/j.jhep.2018.09.014

Reverter E, Tandon P, Augustin S, Turon F, Casu S, Bastiampillai R, et al. A MELD-based model to determine risk of mortality among patients with acute variceal bleeding. Gastroenterology. 2014;146(2):412-419. doi: 10.1053/j.gastro.2013.10.018. DOI: https://doi.org/10.1053/j.gastro.2013.10.018

Chen PC, Chen BH, Huang CH, Jeng WJ, Hsieh YC, Teng W, et al. Integrated model for end-stage liver disease may be superior to some other model for end-stage liver disease-based systems in addition to Child-Turcotte-Pugh and albumin-bilirubin scores in patients with hepatitis B virus-related liver cirrhosis and spontaneous bacterial peritonitis. Eur J Gastroenterol Hepatol. 2019;31(10):1256-1263. doi: 10.1097/MEG.0000000000001481. DOI: https://doi.org/10.1097/MEG.0000000000001481

Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359(10):1018-1026. doi: 10.1056/NEJMoa0801209. DOI: https://doi.org/10.1056/NEJMoa0801209

Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. doi: 10.1016/j.echo.2016.01.011. DOI: https://doi.org/10.1016/j.echo.2016.01.011

Pinto C, Ninfole E, Gaggiano L, Benedetti A, Marzioni M, Maroni L. Aging and the biological response to liver injury. Semin Liver Dis. 2020;40(3):225-232. doi: 10.1055/s-0039-3402033. DOI: https://doi.org/10.1055/s-0039-3402033

Toma L, Stanciu AM, Zgura A, Bacalbasa N, Diaconu C, Iliescu L. Electrocardiographic Changes in Liver Cirrhosis-Clues for Cirrhotic Cardiomyopathy. Medicina (Kaunas). 2020 Feb 10;56(2):68. doi: 10.3390/medicina56020068. DOI: https://doi.org/10.3390/medicina56020068

Moaref A, Zamirian M, Yazdani M, Salehi O, Sayadi M, Aghasadeghi K. The correlation between echocardiographic findings and QT interval in cirrhotic patients. Int Cardiovasc Res J. 2014;8:39–43. PMID: 24936479.

Akboga MK, Yuksel M, Balci KG, Kaplan M, Cay S, Gokbulut V, et al. Tp-e interval, Tp-e/QTc ratio, and fragmented QRS are correlated with the severity of liver cirrhosis. Ann Noninvasive Electrocardiol. 2017;22(1):e12359. doi: 10.1111/anec.12359. DOI: https://doi.org/10.1111/anec.12359

Singh H, Panwar S, Arora R. Evaluation of electrocardiographic changes in patients with cirrhosis and their correlation with severity of disease. Int J Life Sci Biotechnol Pharma Res. 2023;12(3):477–482.

Testino G, Leone S, Pellicano R. Atrial fibrillation and alcoholic beverages. Minerva Med. 2019;110:471–472. doi: 10.23736/S0026-4806.19.05958-5. DOI: https://doi.org/10.23736/S0026-4806.19.05958-5

Tsiompanidis E, Siakavellas SI, Tentolouris A, Eleftheriadou I, Chorepsima S, Manolakis A, et al. Liver cirrhosis-effect on QT interval and cardiac autonomic nervous system activity. World J Gastrointest Pathophysiol. 2018;9:28–36. doi: 10.4291/wjgp.v9.i1.28. DOI: https://doi.org/10.4291/wjgp.v9.i1.28

Wong F. Cirrhotic cardiomyopathy. Hepatol Int. 2009;3:294–304. doi: 10.1007/s12072-008-9109-7. DOI: https://doi.org/10.1007/s12072-008-9109-7

Arteyeva NV, Goshka SL, Sedova KA, Bernikova OG, Azarov JE. What does the T(peak)-T(end) interval reflect? An experimental and model study. J Electrocardiol. 2013;46:296.e1–296. doi: 10.1016/j.jelectrocard.2013.02.001. DOI: https://doi.org/10.1016/j.jelectrocard.2013.02.001

Erikssen G, Liestøl K, Gullestad L, Haugaa KH, Bendz B, Amlie JP. The terminal part of the QT interval (T peak to T end): a predictor of mortality after acute myocardial infarction. Ann Noninvasive Electrocardiol. 2012;17(2):85-94. doi: 10.1111/j.1542-474X.2012.00493.x. DOI: https://doi.org/10.1111/j.1542-474X.2012.00493.x

Karaman K, Altunkaş F, Çetin M, Karayakali M, Arısoy A, Akar I, et al. New markers for ventricular repolarization in coronary slow flow: Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio. Ann Noninvasive Electrocardiol. 2015;20(4):338-344. doi: 10.1111/anec.12203. DOI: https://doi.org/10.1111/anec.12203

Barutcu S, Inanc I, Sabanoglu C, Polat E. Predictive value of Tp-e interval, Tp-e/QT, and Tp-e/QTc for disease severity in patients with liver cirrhosis. Eur Rev Med Pharmacol Sci. 2023;27(3):1110-1120. doi: 10.26355/eurrev_202302_31214.

Li X, Yu S, Li L, Han D, Dai S, Gao Y. Cirrhosis-related changes in left ventricular function and correlation with the model for end-stage liver disease score. Int J Clin Exp Med. 2014;7(12):5751-5757. PMID: 25664102.

Reddy YNV, Melenovsky V, Redfield MM, Nishimura RA, Borlaug BA. High-output heart failure: A 15-year experience. J Am Coll Cardiol. 2016;68(5):473–482. doi: 10.1016/j.jacc.2016.05.043. DOI: https://doi.org/10.1016/j.jacc.2016.05.043

Downloads

Published

2025-11-16

How to Cite

Abduljabbar, A. S. (2025). Electrocardiographic T-Wave Changes in Patients with Liver Cirrhosis: A Marker of Decompensation. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 9(2), 250–255. https://doi.org/10.54133/ajms.v9i2.2489

Issue

Section

Original article

Similar Articles

<< < 3 4 5 6 7 8 

You may also start an advanced similarity search for this article.