AGE-RAGE Pathway as a Potential Therapeutic Target
DOI:
https://doi.org/10.54133/ajms.v9i1.2108Keywords:
AGE-RAGE pathway, Advanced glycation end products, Therapeutic targetAbstract
The advanced glycation end products (AGEs) are created by reactions involving a nonenzymatic glycation of lysine or arginine of proteins, and then additional glycoxidation due to oxidative stress occurs. They are part of the secondary stages of traumatic brain injury and the initiation and aggravation of several conditions, such as diabetes mellitus, Alzheimer's disease, and atherosclerosis. The receptor for AGE, also known as the receptor for advanced glycation end product (RAGE), interacts with AGEs and produces intra- and interprotein cross-linkages that deactivate different enzymes and accelerate the course of illness. There is rising interest in targeting the AGE-RAGE pathway as a potential therapeutic intervention by developing AGE inhibitors, AGE-breaker compounds, RAGE antagonists, and exogenous sRAGE administration to treat AGE-related diseases, including diabetes mellitus and various neurodegenerative diseases. This implies that AGEs play a substantial part in the etiology of many diseases, and addressing the AGE-RAGE pathway might bring about new therapeutic options.
Downloads
References
Zeng C, Li Y, Ma J, Niu L, Tay FR. Clinical/translational aspects of advanced glycation end-products. Trend Endocrinol Metab. 2019;30(12):959–973. doi: 10.1016/j.tem.2019.08.005. DOI: https://doi.org/10.1016/j.tem.2019.08.005
Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33(4):499–512. doi: 10.1007/s10719-016-9694-y. DOI: https://doi.org/10.1007/s10719-016-9694-y
Perrone A, Giovino A, Benny J, Martinelli F. Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. Oxid Med Cell Longev. 2020;2020. doi: 10.1155/2020/3818196. DOI: https://doi.org/10.1155/2020/3818196
Roorda MM. Therapeutic interventions against accumulation of advanced glycation end products (AGEs). Glycative Stress Res. 2017;4(2):132–143. doi: 10.24659/gsr.4.2_132.
Rojas A, Morales M, Gonzalez I, Araya P. Inhibition of RAGE axis signaling: A pharmacological challenge. Curr Drug Targets. 2019;20(3):340–346. doi: 10.2174/1389450119666180820105956. DOI: https://doi.org/10.2174/1389450119666180820105956
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, et al. The development of Maillard reaction, and advanced glycation end product (Age)-receptor for age (rage) signaling inhibitors as novel therapeutic strategies for patients with age-related diseases. Molecules. 2020;25(23). doi: 10.3390/molecules25235591. DOI: https://doi.org/10.3390/molecules25235591
Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today. 2006;11(13–14):646–654. doi: 10.1016/j.drudis.2006.05.016. DOI: https://doi.org/10.1016/j.drudis.2006.05.016
Prasad K, Mishra M. AGE–RAGE stress, stressors, and antistressors in health and disease. Int J Angiol. 2018;27(01):1–12. doi: 10.1055/s-0037-1613678. DOI: https://doi.org/10.1055/s-0037-1613678
Prasad K. Low levels of serum soluble receptors for advanced glycation end products, biomarkers for disease state: myth or reality. Int J Angiol. 2014;23(1):11-16. doi: 10.1055/s-0033-1363423. DOI: https://doi.org/10.1055/s-0033-1363423
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets. 2016;20(4):431–446. doi: 10.1517/14728222.2016.1111873. DOI: https://doi.org/10.1517/14728222.2016.1111873
Cohen CR, Diel VBN, La Porta VL, Rohde LE, Biolo A, Clausell N, et al. Association study of polymorphisms in the receptor for advanced glycation end-products (RAGE) gene with susceptibility and prognosis of heart failure. Gene. 2012;510(1):7–13. doi: 10.1016/J.GENE.2012.08.043. DOI: https://doi.org/10.1016/j.gene.2012.08.043
Park JH, Li L, Choi JW, Baek KH. The association of -429T>C and -374T>A polymorphisms in the RAGE gene with polycystic ovary syndrome. Int J Med Sci. 2016;13(6):451-456. doi: 10.7150/ijms.15389. DOI: https://doi.org/10.7150/ijms.15389
Gaens KHJ, Ferreira I, van der Kallen CJH, van Greevenbroek MMJ, Blaak EE, Feskens EJM, et al. Association of polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating RAGE levels. J Clin Endocrinol Metab. 2009;94(12):5174–5180. doi: 10.1210/jc.2009-1067. DOI: https://doi.org/10.1210/jc.2009-1067
Serveaux-Dancer M, Jabaudon M, Creveaux I, Belville C, Blondonnet R, Gross C, et al. Pathological implications of receptor for advanced glycation end-Product (AGER) gene polymorphism. Dis Markers. 2019;2019(1):2067353. doi: 10.1155/2019/2067353. DOI: https://doi.org/10.1155/2019/2067353
Shi Z, Lu W, Xie G. Association between the RAGE gene -374T/A, -429T/C polymorphisms and diabetic nephropathy: a meta-analysis. Ren Fail. 2015;37(5):751–756. doi: 10.3109/0886022X.2015.1014754. DOI: https://doi.org/10.3109/0886022X.2015.1014754
Cai W, Li J, Xu JX, Liu Y, Zhang W, Xiao JR, et al. Association of 2184AG polymorphism in the RAGE gene with diabetic nephropathy in Chinese patients with type 2 diabetes. J Diabetes Res. 2015;2015(1):310237. doi: 10.1155/2015/310237=b. DOI: https://doi.org/10.1155/2015/310237
Hung SC, Wang SS, Li JR, Chen CS, Lin CY, Chang LW, et al. Impact of RAGE polymorphisms on urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol Oncol. 2019;37(9):573.e9-573.e17. doi: 10.1016/J.UROLONC.2019.02.012. DOI: https://doi.org/10.1016/j.urolonc.2019.02.012
Al-Doori OS, Ali SH. Gene polymorphisms of receptors for advanced glycation end products (RAGE) in association with incidence of colorectal cancer (CRC) among Iraqi patients. NeuroQuantology. 2022;20(8):4124–4132. doi: 10.14704/nq.2022.20.8.NQ44444.
Rhee SY, Kim YS. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J. 2018;42(3):188–195. doi: 10.4093/dmj.2017.0105. DOI: https://doi.org/10.4093/dmj.2017.0105
Khalid M, Petroianu G, Adem A. Advanced glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives [Internet]. Vol. 12, Biomolecules. MDPI; 2022. Available from: http://doi.org/10.3390/biom12040542 DOI: https://doi.org/10.3390/biom12040542
Li Z, Zhao Z, Chen S, Wang X, Wang D, Nie X, et al. Ge-Gen-Qin-Lian decoction alleviates the symptoms of type 2 diabetes mellitus with inflammatory bowel disease via regulating the AGE-RAGE pathway. BMC Complement Med Ther. 2024;24(1). doi: 10.1186/s12906-024-04526-x. DOI: https://doi.org/10.1186/s12906-024-04526-x
Jud P, Sourij H. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Res Clin Pract. 2019;148:54–63. doi: 10.1016/J.DIABRES.2018.11.016. DOI: https://doi.org/10.1016/j.diabres.2018.11.016
Yamagishi SI, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol Med. 2015;21:S32–40. doi: 10.2119/molmed.2015.00067. DOI: https://doi.org/10.2119/molmed.2015.00067
Bahmani F, Bathaie SZ, Aldavood SJ, Ghahghaei A. Inhibitory effect of crocin(s) on lens α-crystallin glycation and aggregation, results in the decrease of the risk of diabetic cataract. Molecules. 2016;21(2). doi: 10.3390/molecules21020143. DOI: https://doi.org/10.3390/molecules21020143
Wang B, Jiang T, Qi Y, Luo S, Xia Y, Lang B, et al. AGE-RAGE axis and cardiovascular diseases: Pathophysiologic mechanisms and prospects for clinical applications. Cardiovasc Drugs Ther. 2024. doi: 10.1007/s10557-024-07639-0. DOI: https://doi.org/10.1007/s10557-024-07639-0
Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta. 2019;1865(3):611–619. doi: 10.1016/J.BBADIS.2019.01.006. DOI: https://doi.org/10.1016/j.bbadis.2019.01.006
Takata T, Inoue S, Masauji T, Miyazawa K, Motoo Y. Generation and accumulation of various advanced glycation end-products in cardiomyocytes may induce cardiovascular disease. Int J Mol Sci. 2024;25. doi: 10.3390/ijms25137319. DOI: https://doi.org/10.3390/ijms25137319
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol Med. 2018;24(1). doi: 10.1186/s10020-018-0060-3. DOI: https://doi.org/10.1186/s10020-018-0060-3
Yamagishi SI, Matsui T. Role of hyperglycemia-induced advanced glycation end product (AGE) accumulation in atherosclerosis. Ann Vasc Dis. 2018;11(3):253–258. doi: 10.3400/avd.ra.18-00070. DOI: https://doi.org/10.3400/avd.ra.18-00070
Turner DP. The role of advanced glycation end-products in cancer disparity. Adv Cancer Res. 2017;133:1–22. doi: 10.1016/BS.ACR.2016.08.001. DOI: https://doi.org/10.1016/bs.acr.2016.08.001
Malik P, Chaudhry N, Mittal R, Mukherjee TK. Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim Biophys Acta. 2015;1850(9):1898–1904. doi: 10.1016/j.bbagen.2015.05.020. DOI: https://doi.org/10.1016/j.bbagen.2015.05.020
Palanissami G, Paul SFD. AGEs and RAGE: metabolic and molecular signatures of the glycation-inflammation axis in malignant or metastatic cancers. Vol. 4, Exploration of Targeted Anti-tumor Therapy. 2023;4:812–949. Open Exploration Publishing Inc. doi: 10.37349/etat.2023.00170. DOI: https://doi.org/10.37349/etat.2023.00170
Turner DP. Advanced glycation end-products: A biological consequence of lifestyle contributing to cancer disparity. Cancer Res. 2015;75(10):1925–1929. doi: 10.1158/0008-5472.CAN-15-0169. DOI: https://doi.org/10.1158/0008-5472.CAN-15-0169
Nasser MW, Wani NA, Ahirwar DK, Powell CA, Ravi J, Elbaz M, et al. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res. 2015;75(6):974–985. doi: 10.1158/0008-5472.CAN-14-2161. DOI: https://doi.org/10.1158/0008-5472.CAN-14-2161
Nankali M, Karimi J, Goodarzi MT, Saidijam M, Khodadadi I, Razavi ANE, et al. Increased expression of the receptor for advanced glycation end-products (RAGE) is associated with advanced breast cancer stage. Oncol Res Treat. 2016;39(10):622–628. doi: 10.1159/000449326. DOI: https://doi.org/10.1159/000449326
Shahab U, Ahmad MK, Mahdi AA, Waseem M, Arif B, Moinuddin, et al. The receptor for advanced glycation end products: A fuel to pancreatic cancer. Semin Cancer Biol. 2018;49:37–43. doi: 10.1016/J.SEMCANCER.2017.07.010. DOI: https://doi.org/10.1016/j.semcancer.2017.07.010
Syed DN, Aljohani A, Waseem D, Mukhtar H. Ousting RAGE in melanoma: A viable therapeutic target? Semin Cancer Biol. 2018;49:20–28. doi: 10.1016/J.SEMCANCER.2017.10.008. DOI: https://doi.org/10.1016/j.semcancer.2017.10.008
Bhattacharya R, Alam MR, Kamal MA, Seo KJ, Singh LR. AGE-RAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration. Front Mol Neurosci. 2023;16. doi: 10.3389/fnmol.2023.1155175. DOI: https://doi.org/10.3389/fnmol.2023.1155175
Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ. Advanced glycation end products modulate amyloidogenic APP processing and Tau phosphorylation: A mechanistic link between glycation and the development of Alzheimer’s disease. ACS Chem Neurosci. 2018;9(5):988–1000. doi: 10.1021/acschemneuro.7b00410. DOI: https://doi.org/10.1021/acschemneuro.7b00410
Leclerc E, Sturchler E, Vetter SW. The S100B/RAGE axis in Alzheimer′s disease. Cardiovasc Psychiatry Neurol. 2010;2010(1):539581. doi: 10.1155/2010/539581. DOI: https://doi.org/10.1155/2010/539581
Prasad K. AGE–RAGE stress: a changing landscape in pathology and treatment of Alzheimer’s disease. Mol Cell Biochem. 2019;459(1):95–112. doi: 10.1007/s11010-019-03553-4. DOI: https://doi.org/10.1007/s11010-019-03553-4
Derk J, MacLean M, Juranek J, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J Alzheimers Dis Parkinsonism. 2018;08(01). doi: 10.4172/2161-0460.1000421. DOI: https://doi.org/10.4172/2161-0460.1000421
Firoz A, Akhter A, Kesari KK, Javed R, Ruokolainen J, Vuorinen T. RAGE Exacerbate amyloid beta (Aβ) induced Alzheimer pathology: A systemic overview. In: Kesari KK, (editor), Networking of Mutagens in Environmental Toxicology. Cham: Springer International Publishing; 2019. p. 159–170. doi: 10.1007/978-3-319-96511-6_9. DOI: https://doi.org/10.1007/978-3-319-96511-6_9
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, et al. Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson’s disease. J Neurochem. 2024;168(8):1608–1624. doi: 10.1111/jnc.15890. DOI: https://doi.org/10.1111/jnc.15890
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic toxicity of advanced glycation end products in CKD. J Am Soc Nephrol. 2016;27:354–370. doi: 10.1681/ASN.2014101047. DOI: https://doi.org/10.1681/ASN.2014101047
Steenbeke M, Speeckaert R, Desmedt S, Glorieux G, Delanghe JR, Speeckaert MM. The role of advanced glycation end products and its soluble receptor in kidney diseases. Int J Mol Sci. 2022;23(7). doi: 10.3390/ijms23073439. DOI: https://doi.org/10.3390/ijms23073439
Alejandro G, Menini T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. In: Camps J, (editor), Oxidative stress and inflammation in non-communicable diseases - Molecular mechanisms and perspectives in therapeutics. Cham: Springer International Publishing; 2014. p. 191–208. doi: 10.1007/978-3-319-07320-0_14. DOI: https://doi.org/10.1007/978-3-319-07320-0_14
Body-Malapel M, Djouina M, Waxin C, Langlois A, Gower-Rousseau C, Zerbib P, et al. The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol. 2019;12(2):468–478. doi: 10.1038/S41385-018-0119-Z. DOI: https://doi.org/10.1038/s41385-018-0119-z
Yamagishi S ichi, Matsui T. Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur J Med Res. 2015;20(1):15. doi: 10.1186/s40001-015-0090-z. DOI: https://doi.org/10.1186/s40001-015-0090-z
Waseda K, Miyahara N, Taniguchi A, Kurimoto E, Ikeda G, Koga H, et al. Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am J Respir Cell Mol Biol. 2015;52(4):482–4491. doi: 10.1165/rcmb.2014-0027OC. DOI: https://doi.org/10.1165/rcmb.2014-0027OC
Yonchuk JG, Silverman EK, Bowler RP, Agustí A, Lomas DA, Miller BE, et al. Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. Am J Respir Crit Care Med. 2015;192(7):785-92. doi: 10.1164/rccm.201501-0137PP. DOI: https://doi.org/10.1164/rccm.201501-0137PP
Cheng HS, Ton SH, Kadir KA. Therapeutic agents targeting at AGE-RAGE axis for the treatment of diabetes and cardiovascular disease: A review of clinical evidence. Clin Diabetes Res. 2017;1(1). doi: 10.36959/647/490. DOI: https://doi.org/10.36959/647/490
Reddy VP, Aryal P, Darkwah EK. Advanced glycation end products in health and disease. Microorganisms. 2022;10(9). doi: 10.3390/microorganisms10091848. DOI: https://doi.org/10.3390/microorganisms10091848
Jogula RMR, Row AT, Siddiqui AH. The effect of treatment with aminoguanidine, an advanced glycation end product inhibitor, on streptozotocin-induced diabetic rats and its effects on physiological and renal functions. Cureus. 2023. doi: 10.7759/cureus.42426. DOI: https://doi.org/10.7759/cureus.42426
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev. 2020;40(4):1200–1219. doi: 10.1002/med.21654. DOI: https://doi.org/10.1002/med.21654
Kim J, Kim NH, Sohn E, Kim CS, Kim JS. Methylglyoxal induces cellular damage by increasing argpyrimidine accumulation and oxidative DNA damage in human lens epithelial cells. Biochem Biophys Res Commun. 2010;391(1):346–351. doi: 10.1016/j.bbrc.2009.11.061. DOI: https://doi.org/10.1016/j.bbrc.2009.11.061
van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients. 2019;11(2). doi: 10.3390/nu11020482. DOI: https://doi.org/10.3390/nu11020482
Halczuk K, Kaźmierczak-Barańska J, Karwowski BT, Karmańska A, Cieślak M. Vitamin B12—Multifaceted in vivo functions and in vitro applications. Nutrients. 2023;15(12). doi: 10.3390/nu15122734. DOI: https://doi.org/10.3390/nu15122734
Koulis C, Watson AMD, Gray SP, Jandeleit-Dahm KA. Linking RAGE and Nox in diabetic micro- and macrovascular complications. Diabetes Metab. 2015;41(4):272–281. doi: 10.1016/J.DIABET.2015.01.006. DOI: https://doi.org/10.1016/j.diabet.2015.01.006
Pickering RJ, Tikellis C, Rosado CJ, Tsorotes D, Dimitropoulos A, Smith M, et al. Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. J Clin Invest. 2019;129(1). doi: 10.1172/JCI99987. DOI: https://doi.org/10.1172/JCI99987
Yepuri G, Hasan SN, Kumar V, Manigrasso MB, Theophall G, Shekhtman A, et al. Mechanistic underpinnings of AGEs-RAGE via DIAPH1 in ischemic, diabetic, and failing hearts. Am J Physiol Heart Circ Physiol. 2025. doi: 10.1152/ajpheart.00685.2024. DOI: https://doi.org/10.1152/ajpheart.00685.2024

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).