CD40 Gene Variants and Disease Susceptibility: A Comprehensive Review of Associations with Immune-Mediated Inflammatory Diseases, Cancer, and Infectious Diseases

Authors

DOI:

https://doi.org/10.54133/ajms.v8i2.1904

Keywords:

CD40, Case control, Immune disease, Polymorphism

Abstract

CD40 is a type 1 transmembrane protein composed of 277 amino acids, and it belongs to the tumor necrosis factor receptor (TNFR) superfamily. It is expressed in a variety of cell types, including normal B cells, macrophages, dendritic cells, and endothelial cells, as a costimulatory molecule. This study aims to summarize the CD40 polymorphism effect and its susceptibility to immune-related disorders. The CD40 gene polymorphisms showed a significant association with different immune-related disorders and act as a risk factor for increased susceptibility to these diseases.

Downloads

Download data is not yet available.

References

Loskog AS, Eliopoulos AG. The Janus faces of CD40 in cancer. Semin Immunol. 2009;21(5):301-7. doi: 10.1016/j.smim.2009.07.001. DOI: https://doi.org/10.1016/j.smim.2009.07.001

Zhang Y, Wang N, Ding M, Yang Y, Wang Z, Huang L, et al. CD40 accelerates the antigen-specific stem-like memory CD8+ T cells formation and human papilloma virus (HPV)-positive tumor eradication. Front Immunol. 2020;11:1012. doi: 10.3389/fimmu.2020.01012. DOI: https://doi.org/10.3389/fimmu.2020.01012

Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–172. doi: 10.1111/j.1600-065X.2009.00782.x. DOI: https://doi.org/10.1111/j.1600-065X.2009.00782.x

Petrackova A, Smrzova A, Gajdos P, Schubertova M, Schneiderova P, Kromer P, et al. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clin Proteomics. 2017;14:1-5. doi: 10.1186/s12014-017-9167-8. DOI: https://doi.org/10.1186/s12014-017-9167-8

Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves‘ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology. 2005;146(6):2684–2691. doi: 10.1210/en.2004-1617. DOI: https://doi.org/10.1210/en.2004-1617

Vazgiourakis VM, Zervou MI, Choulaki C, Bertsias G, Melissougaki M, Yilmaz N, et al. A common SNP in the CD40 region is associated with systemic lupus erythematosus and correlates with altered CD40 expression: implications for the pathogenesis. Ann Rheum Dis. 2011;70:2184–2190. doi: 10.1136/ard.2010.146530. DOI: https://doi.org/10.1136/ard.2010.146530

Kim TY, Park YJ, Hwang JK, Song JY, Park KS, Cho BY, et al. A C/T polymorphism in the 5’-untranslated region of the CD40 gene is associated with Graves’ disease in Koreans. Thyroid. 2003;13(10):919–925. doi: 10.1089/105072503322511319. DOI: https://doi.org/10.1089/105072503322511319

Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Associations between the functional CD40 rs4810485 G/T polymorphism and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Lupus. 2015;24(11):1177-1183. doi: 10.1177/0961203315583543. DOI: https://doi.org/10.1177/0961203315583543

de Winter JJ, van Mens LJ, van der Heijde D, Landewé R, Baeten DL. Prevalence of peripheral and extra-articular disease in ankylosing spondylitis versus non-radiographic axial spondyloarthritis: a meta-analysis. Arthritis Res Ther. 2016;18:1. doi: 10.1186/s13075-016-1093-z. DOI: https://doi.org/10.1186/s13075-016-1093-z

Brown MA. Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatology. 2008;47(2):132-137. doi: 10.1093/rheumatology/kem269. DOI: https://doi.org/10.1093/rheumatology/kem269

Zayed KS, Kudhair BK, Lafta IJ. Association of CTLA-4 (+ 49A/G) polymorphism and susceptibility of developing rheumatoid arthritis in an Iraqi Arab population. Human Gene. 2022;1;33:201037. doi: 10.1016/j.humgen.2022.201037. DOI: https://doi.org/10.1016/j.humgen.2022.201037

Alhilali DN, Mohammed SI, Gorial FI. Review of interleukin-6 polymorphisms in rheumatoid arthritis: a genetic implications. J Adv Pharm Edu Res. 2025;15(1). doi: 10.51847/bxjUqUoEla. DOI: https://doi.org/10.51847/bxjUqUoEla

Alhilali D, Mohammed SI. Genetic polymorphisms at TNF-alpha receptors associated some autoimmune diseases and response of anti-TNF biologics. Iraqi J Pharm Sci. 2024;33(4):49-58. doi: 10.31351/vol33iss4pp49-58. DOI: https://doi.org/10.31351/vol33iss4pp49-58

Mohammed SI, Jamal MY, Alshamari IO. The association of genetic polymorphisms in tumor necrosis factor-alpha and interleukins with disease severity or response to biological therapy in Iraqi rheumatoid arthritis patients: A narrative review. Al-Rafidain J Med Sci. 2023;17;4:24-33. doi: 10.54133/ajms.v4i.100. DOI: https://doi.org/10.54133/ajms.v4i.100

Zepa J, Silamiķele L, Bulina I, Lavrentjevs V, Trapina I, Klovins J, et al. CD40 rs4810485 T> G polymorphism and susceptibility to ankylosing spondylitis in the Latvian population. Genet Mol Res. 2018;17(3):1-9. doi: 10.4238/gmr18081. DOI: https://doi.org/10.4238/gmr18081

Acharya P, Acharya S. Current and emerging treatment options for Graves’ hyperthyroidism. Ther Clin Risk Manag. 2010;6:29–40. doi: 10.2147/tcrm.s5229. DOI: https://doi.org/10.2147/TCRM.S5229

Bufalo NE, Santos D, Rocha AG, Teodoro L, Romaldini JH, Ward LS. Polymorphisms of the genes CTLA4, PTPN22, CD40, and PPARG and their roles in Graves’ disease: susceptibility and clinical features. Endocrine. 2021;71(1):104–112. doi: 10.1007/s12020-020-02337-x. DOI: https://doi.org/10.1007/s12020-020-02337-x

Doria G, Frasca D. Basic Immunology. In: Gill RG, Harmon JT, Maclaren NK (Eds.), Immunologically Mediated Endocrine Diseases. 2002;p. 1–42.

Huber AK, Finkelman FD, Li CW, Smith CE, Jacobson E. Genetically driven target tissue overexpression of CD40: a novel mechanism in autoimmune disease. J Immunol. 2012;189:3043–3053. doi: 10.4049/jimmunol.1200311. DOI: https://doi.org/10.4049/jimmunol.1200311

Shukla SK, Mehra S, Pant P, Ahmad S, Singh G. A C/T polymorphism at the 5’ untranslated region of CD40 gene in patients associated with Graves’ disease in Kumaon Region. J Med Sci Health. 2024;10(2):162-168. doi: 10.46347/jmsh.v10.i2.24.103. DOI: https://doi.org/10.46347/jmsh.v10.i2.24.103

Duurland CL, Wedderburn LR. Current developments in the use of biomarkers for juvenile idiopathic arthritis. Curr Rheumatol Rep. 2014;16(3):406. doi: 10.1007/s11926-013-0406-3. DOI: https://doi.org/10.1007/s11926-013-0406-3

Kutukculer N, Caglayan S, Aydogdu F. Study of pro-inflammatory (TNF-α, IL-1α, IL-6) and T-cell-derived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: correlations with clinical and laboratory parameters. Clin Rheumatol. 1998;17:288–292. doi: 10.1007/BF01451007. DOI: https://doi.org/10.1007/BF01451007

Gheita T, Kamel S, Helmy N, El-Laithy N, Monir A. Omega-3 fatty acids in juvenile idiopathic arthritis: effect on cytokines (IL-1 and TNF-a), disease activity and response criteria. Clin Rheumatol. 2012;31(2):363–366. doi: 10.1007/s10067-011-1848-5. DOI: https://doi.org/10.1007/s10067-011-1848-5

García-Bermúdez M, González-Juanatey C, López-Mejías R, Teruel M, Corrales A, Miranda-Filloy JA, et al. Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in Spanish rheumatoid arthritis patients. PLoS One. 2012;7(11):e49214. doi: 10.1371/journal.pone.0049214. DOI: https://doi.org/10.1371/journal.pone.0049214

Hafez EA, Mosaad H. CD226 and CD40 gene polymorphism in Egyptian juvenile idiopathic arthritis children: Relation to disease susceptibility and activity. Egypt Rheumatologist. 2018;40(1):59-62. doi: 10.1016/j.ejr.2017.05.005. DOI: https://doi.org/10.1016/j.ejr.2017.05.005

Rahman A, Isenberg DA. Systemic lupus erythematosus. New Engl J Med. 2008;358(9):929–939. doi: 10.1056/NEJMra071297. DOI: https://doi.org/10.1056/NEJMra071297

Tsokos GC. Systemic lupus erythematosus. New Engl J Med. 2011;365(22):2110–2121. doi: 10.1056/NEJMra1100359. DOI: https://doi.org/10.1056/NEJMra1100359

Tapia‐Llanos R, Muñoz‐Valle JF, Román‐Fernández IV, Marín‐Rosales M, Salazar‐Camarena DC, Cruz A, et al. Association of soluble CD40 levels with‐1 C> T CD40 polymorphism and chronic kidney disease in systemic lupus erythematosus. Mol Genet Genom Med. 2019;7(12):e1014. doi: 10.1002/mgg3.1014. DOI: https://doi.org/10.1002/mgg3.1014

Newberger JW, Son MBF. Kawasaki disease. In: Kliegman RM, Stanton BF, Schor NF, (Eds.), Nelson Text Book of Pediatrics, (20th Ed.), New York: Elsevier (2016). p. 1209–13.

Son MB, Sundel RP. Kawasaki disease. In: Petty RE, Laxer RM, Lindsay CB, Wedderburn LR, (Eds.), Text Book of Pediatric Rheumatology, (7th Ed.), Philadelphia, PA: Elsevier (2016). p. 467–83. DOI: https://doi.org/10.1016/B978-0-323-24145-8.00035-1

Garlichs CD, Eskafi S, Raaz D, Schmidt A, Ludwig J, Herrmann M, et al. Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart. 2001;86(6):649-655. doi: 10.1136/heart.86.6.649. DOI: https://doi.org/10.1136/heart.86.6.649

Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001;8(1):4–43. doi: 10.1007/PL00000776. DOI: https://doi.org/10.1007/PL00000776

Patra PK, Jindal AK, Rikhi R, Kaur A, Srivastava P, Suri D, et al. CD40 gene polymorphism and its expression in children with Kawasaki disease from North India: a preliminary case–control study and meta-analysis. Front Pediatrics. 2023;11:1252024. doi: 10.3389/fped.2023.1252024. DOI: https://doi.org/10.3389/fped.2023.1252024

Terrault NA, Francoz C, Berenguer M, Charlton M, Heimbach J. Liver transplantation 2023: status report, current and future challenges. Clin Gastroenterol Hepatol. 2023;21(8):2150-2166. doi: 10.1016/j.cgh.2023.04.005. DOI: https://doi.org/10.1016/j.cgh.2023.04.005

Liu D, Ferrer I, Konomos M, Ford ML. Inhibition of CD8+ T cell-derived CD40 signals is necessary but not sufficient for Foxp3+ induced regulatory T cell generation in vivo. J Immunol. 2013;191:1957–1964. doi: 10.4049/jimmunol.1300267. DOI: https://doi.org/10.4049/jimmunol.1300267

Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, et al. CTLA-4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA. 1997;94(16):8789–8794. doi: 10.1073/pnas.94.16.8789. DOI: https://doi.org/10.1073/pnas.94.16.8789

Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berning JD, Buchanan K, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med. 1999;5(6):686–693. doi: 10.1038/9536. DOI: https://doi.org/10.1038/9536

Pierson RN, Chang AC, Blum MG, Blair KS, Scott MA, Atkinson JB, et al. Prolongation of primate cardiac allograft survival by treatment with anti-CD40 ligand (CD154) antibody. Transplantation. 1999;68(11):1800–1805. doi: 10.1097/00007890-199912150-00026. DOI: https://doi.org/10.1097/00007890-199912150-00026

Thude H, Kramer K, Koch M, Peine S, Sterneck M, Nashan B. Lack of association between CD40 polymorphisms and acute rejection in German liver transplant recipients. Hum Immunol. 2014;75(11):1123-1127. doi: 10.1016/j.humimm.2014.09.024. DOI: https://doi.org/10.1016/j.humimm.2014.09.024

Cornell LD, Helanterä I. Exploring microvascular inflammation and the spectrum of antibody-mediated rejection. Am J Transplant. 2025;25(1):9-12. doi: 10.1016/j.ajt.2024.08.028. DOI: https://doi.org/10.1016/j.ajt.2024.08.028

Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 2022;101(4):692-710. doi: 10.1016/j.kint.2021.11.029. DOI: https://doi.org/10.1016/j.kint.2021.11.029

Amirzargar A, Lessanpezeshki M, Fathi A, Amirzargar M, Khosravi F, Ansaripour B, et al. TH1/TH2 cytokine analysis in Iranian renal transplant recipients. Transplant Proc. 2005;37(7):2985-2987. doi: 10.1016/j.transproceed.2005.08.004. DOI: https://doi.org/10.1016/j.transproceed.2005.08.004

Bagheri K, Karimi MH, Geramizadeh B, Roozbeh J, Ebadi P. Association of CD40 and IL-18 gene variants with kidney transplant rejection in Iranian patients. Adv Environ Biol. 2014:414-9.

Rocha AM, De Souza C, Rocha GA, De Melo FF, Saraiva IS, Clementino NC, et al. IL1RN VNTR and IL2-330 polymorphic genes are independently associated with chronic immune thrombocytopenia. Br J Haematol. 2010;150(6):679-684. doi: 10.1111/j.1365-2141.2010.08318.x. DOI: https://doi.org/10.1111/j.1365-2141.2010.08318.x

Meabed MH, Taha GM, Mohamed SO, El-Hadidy KS. Autoimmune thrombocytopenia: flow cytometric determination of plateletassociated CD154/CD40L and CD40 on peripheral blood T and B lymphocytes. Hematology. 2007;12:301-307. doi: 10.1080/10245330701383957. DOI: https://doi.org/10.1080/10245330701383957

Ellithy HN, Yousry SM, Abdel-Aal A, Tawadros L, Momen N. Association of CD40 gene polymorphisms and immune thrombocytopenic purpura in the adult Egyptian population. Blood Res. 2022;57(3):229-234. doi: 10.5045/br.2022.2022057. DOI: https://doi.org/10.5045/br.2022.2022057

Zhang B, Wu T, Song C, Chen M, Li H, Guo R. Association of CD40− 1C/T polymorphism with cerebral infarction susceptibility and its effect on sCD40L in Chinese population. Int Immunopharmacol. 2013;16(4):461-465. doi: 10.1016/j.intimp.2013.04.028. DOI: https://doi.org/10.1016/j.intimp.2013.04.028

Pineda B, Laporta P, Hermenegildo C, Cano A, Garcia-Perez MA. AC> T polymorphism located at position− 1 of the Kozak sequence of CD40 gene is associated with low bone mass in Spanish postmenopausal women. Osteoporosis Int. 2008;19:1147-1152. doi: 10.1007/s00198-007-0536-4. DOI: https://doi.org/10.1007/s00198-007-0536-4

Blanco-Kelly F, Matesanz F, Alcina A, Teruel M, Díaz-Gallo LM, Gómez-García M, et al. CD40: novel association with Crohn's disease and replication in multiple sclerosis susceptibility. PloS One. 2010;5(7):e11520. doi: 10.1371/journal.pone.0011520. DOI: https://doi.org/10.1371/journal.pone.0011520

Miller AL, Lo SL, Albright D, Lee JM, Hunter CM, Bauer KW, et al. Adolescent interventions to manage self-regulation in type 1 diabetes (AIMS-T1D): randomized control trial study protocol. BMC Pediatrics. 2020 ;20:1-0. doi: 10.1186/s12887-020-2012-7. DOI: https://doi.org/10.1186/s12887-020-2012-7

Al-Dahr MHS. Inflammatory biomarkers and endothelial dysfunction among obese type 2 diabetic patients: a correlational study. Eur J Gen Med. 2016;13(3):31-33. DOI: https://doi.org/10.29333/ejgm/81901

Seijkens T, Kusters P, Engel D, Lutgens E. CD40–CD40L: Linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diabetes Vasc Dis Res. 2013;10(2):115-122. doi: 10.1177/1479164112455817. DOI: https://doi.org/10.1177/1479164112455817

Wang HL, Wang L, Zhao CY, Lan HY. Role of TGF-beta signaling in beta cell proliferation and function in diabetes. Biomolecules. 2022;12(3):373. doi: 10.3390/biom12030373. DOI: https://doi.org/10.3390/biom12030373

Ma J, Sanchez-Duffhues G, Goumans MJ, Ten Dijke P. TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering. Front Cell Dev Biol. 2020;8:260. doi: 10.3389/fcell.2020.00260. DOI: https://doi.org/10.3389/fcell.2020.00260

Al-Husseiny IA, Al-Malkey MK, Hassan IB, Rabaan AA, Kadhim SS, Khlaf AS. Interleukin 2− 330 single nucleotide polymorphism association with type 1 diabetes in Iraqi patients. InAIP Conf Proc. 2022;2398:1. doi: 10.1063/5.0093594. DOI: https://doi.org/10.1063/5.0093594

Salman O, Merdaw MA, Almaliky AA. A Novel single nucleotide polymorphism of interleukin-10 gene is linked to type 2 diabetes mellitus in Iraqi patients with toxoplasmosis. Iraqi J Pharm Sci. 2022;31(Suppl.):1-8. doi: 10.31351/vol31issSuppl.pp1-8. DOI: https://doi.org/10.31351/vol31issSuppl.pp1-8

Joshi P, Mohr F, Rumig C, Kliemank E, Krenning G, Kopf S, et al. Impact of the-1T> C single-nucleotide polymorphism of the CD40 gene on the development of endothelial dysfunction in a pro-diabetic microenvironment. Atherosclerosis. 2024;394:117386. doi: 10.1016/j.atherosclerosis.2023.117386. DOI: https://doi.org/10.1016/j.atherosclerosis.2023.117386

Pal R, Gochhait S, Chattopadhyay S, Gupta P, Prakash N, Agarwal G, et al. Functional implication of TRAIL− 716 C/T promoter polymorphism on its in vitro and in vivo expression and the susceptibility to sporadic breast tumor. Breast Cancer Res Treat. 2011;126:333-343. doi: 10.1007/s10549-010-0900-5. DOI: https://doi.org/10.1007/s10549-010-0900-5

Murugaiyan G, Martin S, Saha B. CD40-induced countercurrent conduits for tumor escape or elimination? Trends Immunol. 2007;28(11):467-473. doi: 10.1016/j.it.2007.08.010. DOI: https://doi.org/10.1016/j.it.2007.08.010

Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, et al. Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25:876–883. doi: 10.1200/JCO.2006.08.3311. DOI: https://doi.org/10.1200/JCO.2006.08.3311

Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, Starling C, Chen S, et al. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res. 2009;15(4):1317-1325. doi: 10.1158/1078-0432.CCR-08-1360. DOI: https://doi.org/10.1158/1078-0432.CCR-08-1360

Baxendale AJ, Dawson CW, Stewart SE, Mudaliar V, Reynolds G, Gordon J, et al. Constitutive activation of the CD40 pathway promotes cell transformation and neoplastic growth. Oncogene. 2005;24(53):7913-7923. doi: 10.1038/sj.onc.1208929. DOI: https://doi.org/10.1038/sj.onc.1208929

Deregibus MC, Buttiglieri S, Russo S, Bussolati B, Camussi G. CD40- dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem. 2003;278:18008–18014. doi: 10.1074/jbc.M300711200. DOI: https://doi.org/10.1074/jbc.M300711200

Flaxenburg JA, Melter M, Lapchak PH, Briscoe DM, Pal S. The CD40- induced signaling pathway in endothelial cells resulting in the overexpression of vascular endothelial growth factor involves Ras and phosphatidylinositol 3- kinase. J Immunol. 2004;172:7503–7509. doi: 10.4049/jimmunol.172.12.7503. DOI: https://doi.org/10.4049/jimmunol.172.12.7503

Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, et al. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood. 2000;96(12):3801-3808. PMID: 11090063. DOI: https://doi.org/10.1182/blood.V96.12.3801

Shuang C, Dalin L, Weiguang Y, Zhenkun F, Fengyan X, Da P, Li D. Association of CD40 gene polymorphisms with sporadic breast cancer in Chinese Han women of Northeast China. PloS One. 2011;6(8):e23762. doi: 10.1371/journal.pone.0023762. DOI: https://doi.org/10.1371/journal.pone.0023762

Li J, Gao JJ, Li N, Wang YW. Distribution of human papillomavirus genotypes in western China and their association with cervical cancer and precancerous lesions. Arch Virol. 2021;166(3):853-862. doi: 10.1007/s00705-021-04960-z. DOI: https://doi.org/10.1007/s00705-021-04960-z

Xu H, Zhang J. Interpretation of updated pathological contents for cervical cancer in NCCN clinical practice guidelines, version 1, 2020. Zhong¬hua Bing Li Xue Za Zhi. 2021;50(1):9–13. doi: 10.3760/cma.j .cn112151-20200712-00548.

Huang Q, Qu QX, Xie F, Hu JM, Chen YG, et al. Sensitization of SiHa cell to gemcitabine by CD40 activation and its overexpression in cervical carci¬noma. Med Oncol. 2011;28:781–788. doi: 10.1007/s12032-010-9538-8. DOI: https://doi.org/10.1007/s12032-010-9538-8

Altenburg A, Abdel-Naser MB, Nikolakis G, Wild T, Wojtalewicz N. CD40/CD40 ligand interactions and TNFα treatment reduce activity of P105 promoter of the human papilloma virus-18 in vitro. Exp Oncol. 2016;38(1):22-25. PMID: 27031714. DOI: https://doi.org/10.31768/2312-8852.2016.38(1):22-25

Chuai Y, Rizzuto I, Zhang X, Li Y, Dai G, Otter SJ, et al. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer. Cochrane Database Syst Rev. 2021;3(3):CD013348. doi: 10.1002/14651858.CD013348.pub2. DOI: https://doi.org/10.1002/14651858.CD013348.pub2

Zirlik A, Bavendiek U, Libby P, MacFarlane L, Gerdes N, Jagielska J, et al. TRAF-1, -2, -3, -5, and – 6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27:1101–1107. doi: 10.1161/ATVBAHA.107.140566. DOI: https://doi.org/10.1161/ATVBAHA.107.140566

Zhu M, Li X, Feng Y, Jia T, Li S, Gong L, et al. Impact of CD40 gene polymorphisms on the risk of cervical squamous cell carcinoma: a case-control study. BMC Cancer. 2023;23(1):845. doi: 10.1186/s12885-023-11367-3. DOI: https://doi.org/10.1186/s12885-023-11367-3

Thrift AP, El-Serag HB, Kanwal F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat Rev Gastroenterol Hepatol. 2017;14(2):122–132. doi: 10.1038/nrgastro.2016.176. DOI: https://doi.org/10.1038/nrgastro.2016.176

Shoukry NH. Hepatitis C Vaccines, Antibodies, and T Cells. Front Immunol. 2018;9:1480. doi: 10.3389/fimmu.2018.01480. DOI: https://doi.org/10.3389/fimmu.2018.01480

Shiraki K, Sugimoto K, Okano H, Wagayama H, Fujikawa K, Yamanaka T, et al. CD40 expression in HCV-associated chronic liver diseases. Int J Mol Med. 2006;18(4):559–563. doi: 10.3892/ijmm.18.4.559. DOI: https://doi.org/10.3892/ijmm.18.4.559

Rau SJ, Hildt E, Himmelsbach K, Thimme R, Wakita T, Blum HE, et al. CD40 inhibits replication of hepatitis C virus in primary human hepatocytes by c-Jun N terminal kinase activation independent from the interferon pathway. Hepatology. 2013;57(1):23–36. doi: 10.1002/hep.25966. DOI: https://doi.org/10.1002/hep.25966

Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2014;26(3):253–266. doi: 10.1016/j.smim.2014.05.004. DOI: https://doi.org/10.1016/j.smim.2014.05.004

Tian T, Huang P, Wu J, Wang C, Fan H, Zhang Y, et al. CD40 polymorphisms were associated with HCV infection susceptibility among Chinese population. BMC Infect Dis. 2019;19:1-9. doi: 10.1186/s12879-019-4482-5. DOI: https://doi.org/10.1186/s12879-019-4482-5

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810. doi: 10.1001/jama.2016.0287. DOI: https://doi.org/10.1001/jama.2016.0287

Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):775-787. doi: 10.1001/jama.2016.0289. DOI: https://doi.org/10.1001/jama.2016.0289

Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):762-774. doi: 10.1001/jama.2016.0288. DOI: https://doi.org/10.1001/jama.2016.0288

Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014 ;20(4):195-203. doi: 10.1016/j.molmed.2014.01.007. DOI: https://doi.org/10.1016/j.molmed.2014.01.007

Guo X, Li D, Chen M, Chen L, Zhang B, Wu T, et al. miRNA-145 inhibits VSMC proliferation by targeting CD40. Sci Rep. 2016;6(1):35302. doi: 10.1111/jcmm.15316. DOI: https://doi.org/10.1038/srep35302

Mohsen RT, Al-Azzawi RH, Ad’hiah AH. A single-nucleotide polymorphism of IL12A gene (rs582537 A/C/G) and susceptibility to chronic hepatitis B virus infection among Iraqi patients. Egypt J Med Hum Genet. 2022;23(1):110. doi: 10.1186/s43042-022-00322-9. DOI: https://doi.org/10.1186/s43042-022-00322-9

Abbas HM, Al-Mathkhury HJ. Association between the rs2234671 polymorphism and the risk of recurrent urinary tract infections in Iraqi women. Meta Gene. 2020;26:100763. doi: 10.1016/j.mgene.2020.100763. DOI: https://doi.org/10.1016/j.mgene.2020.100763

Hwaiz R, Rahman M, Zhang E, Thorlacius H. Rac1 regulates platelet shedding of CD40L in abdominal sepsis. Lab Invest. 2014;94(9):1054-1063. doi: 10.1038/labinvest.2014.92. DOI: https://doi.org/10.1038/labinvest.2014.92

Liu ZL, Hu J, Xiao XF, Peng Y, Zhao SP, Xiao XZ, et al. The CD40 rs1883832 polymorphism affects sepsis susceptibility and sCD40L levels. BioMed Res Int. 2018;2018(1):7497314. doi: 10.1155/2018/7497314. DOI: https://doi.org/10.1155/2018/7497314

Downloads

Published

2025-05-02

How to Cite

Shanshal, A. M., Mohammed, S. I., & Matti, B. F. (2025). CD40 Gene Variants and Disease Susceptibility: A Comprehensive Review of Associations with Immune-Mediated Inflammatory Diseases, Cancer, and Infectious Diseases. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 8(2), 114–121. https://doi.org/10.54133/ajms.v8i2.1904

Issue

Section

Review article

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.