Cancer Cachexia: Causes and Therapeutic Strategies
DOI:
https://doi.org/10.54133/ajms.v8i2.1616Keywords:
Cachexia, Cancer cachexia, Muscle atrophy, Weight lossAbstract
Cancer cachexia affects approximately 80% of cancer patients and is characterized by skeletal muscle wasting and reduced fat mass, resulting in weight loss and short survival time. An in-depth understanding of the mechanisms of cancer cachexia can provide platforms for drug and non-pharmacological management of this condition that claims the life of around 20% of cancer patients. Most of the current work in this field is in the pre-clinical stages. However, such preliminary knowledge is anticipated to help guide the design of large and comprehensive clinical trials to establish the safety and efficacy of therapeutic interventions to treat cachexia.
Downloads
References
Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754-762. doi: 10.1038/nrc3829. DOI: https://doi.org/10.1038/nrc3829
Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer. 2020;20(5):274-284. doi: 10.1038/s41568-020-0251-4. DOI: https://doi.org/10.1038/s41568-020-0251-4
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, et al. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol. 2023;16(1):54. doi: 10.1186/s13045-023-01454-0. DOI: https://doi.org/10.1186/s13045-023-01454-0
Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105. doi: 10.1038/nrdp.2017.105. DOI: https://doi.org/10.1038/nrdp.2017.105
Hariyanto TI and Kurniawan A. Cachexia in Cancer Patients: Systematic Literature Review. Asian J Oncol. 2020;6:107–115. doi: 10.1055/s-0040-1713701 ISSN 2454-6798. DOI: https://doi.org/10.1055/s-0040-1713701
Yue M, Qin Z, Hu L, Ji H. Understanding cachexia and its impact on lung cancer and beyond. Chin Med J Pulm Crit Care Med. 2024;2(2):95-105. doi: 10.1016/j.pccm.2024.02.003. DOI: https://doi.org/10.1016/j.pccm.2024.02.003
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489-495. doi: 10.1016/S1470-2045(10)70218-7. DOI: https://doi.org/10.1016/S1470-2045(10)70218-7
von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle. 2016;7(5):507-509. doi: 10.1002/jcsm.12167. DOI: https://doi.org/10.1002/jcsm.12167
Teunissen SC, Wesker W, Kruitwagen C, de Haes HC, Voest EE, de Graeff A. Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manage. 2007;34(1):94-104. doi: 10.1016/j.jpainsymman.2006.10.015. DOI: https://doi.org/10.1016/j.jpainsymman.2006.10.015
Kadakia KC, Hamilton-Reeves JM, Baracos VE. Current therapeutic targets in cancer cachexia: A pathophysiologic approach. Am Soc Clin Oncol Educ Book. 2023;43:e389942. doi: 10.1200/EDBK_389942. DOI: https://doi.org/10.1200/EDBK_389942
Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer cachexia: More than skeletal muscle wasting. Trends Cancer. 2018;4(12):849-860. doi: 10.1016/j.trecan.2018.10.001. DOI: https://doi.org/10.1016/j.trecan.2018.10.001
Prado CM, Bekaii-Saab T, Doyle LA, Shrestha S, Ghosh S, Baracos VE, et al. Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br J Cancer. 2012;106(10):1583-1586. doi: 10.1038/bjc.2012.144. DOI: https://doi.org/10.1038/bjc.2012.144
Prado CM, Sawyer MB, Ghosh S, Lieffers JR, Esfandiari N, Antoun S, et al. Central tenet of cancer cachexia therapy: do patients with advanced cancer have exploitable anabolic potential? Am J Clin Nutr. 2013;98(4):1012-1019. doi: 10.3945/ajcn.113.060228. DOI: https://doi.org/10.3945/ajcn.113.060228
Johns N, Stretch C, Tan BH, Solheim TS, Sørhaug S, Stephens NA, et al. New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle. 2017;8(1):122-130. doi: 10.1002/jcsm.12138. DOI: https://doi.org/10.1002/jcsm.12138
Argilés JM, Betancourt A, Guàrdia-Olmos J, Peró-Cebollero M, López-Soriano FJ, Madeddu C, et al. Validation of the cachexia score (CASCO). Staging cancer patients: The Use of miniCASCO as a simplified tool. Front Physiol. 2017;8:92. doi: 10.3389/fphys.2017.00092. DOI: https://doi.org/10.3389/fphys.2017.00092
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, et al. A pound of flesh: What cachexia is and what it is not. Diagnostics (Basel). 2021;11(1):116. doi: 10.3390/diagnostics11010116. DOI: https://doi.org/10.3390/diagnostics11010116
Mariean CR, Tiucă OM, Mariean A, Cotoi OS. Cancer cachexia: New insights and future directions. Cancers (Basel). 2023;15(23):5590. doi: 10.3390/cancers15235590. DOI: https://doi.org/10.3390/cancers15235590
Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle. 2012;3(3):163-179. doi: 10.1007/s13539-012-0074-6. DOI: https://doi.org/10.1007/s13539-012-0074-6
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle. 2021;12(2):252-273. doi: 10.1002/jcsm.12678. DOI: https://doi.org/10.1002/jcsm.12678
Costelli P, De Tullio R, Baccino FM, Melloni E. Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia. Br J Cancer. 2001;84(7):946-950. doi: 10.1054/bjoc.2001.1696. DOI: https://doi.org/10.1054/bjoc.2001.1696
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci. 2020;70(1):40. doi: 10.1186/s12576-020-00768-9. DOI: https://doi.org/10.1186/s12576-020-00768-9
Hu W, Xiong H, Ru Z, Zhao Y, Zhou Y, Xie K, et al. Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia. Cell Death Dis. 2021;12(1):134. doi: 10.1038/s41419-020-03382-0. DOI: https://doi.org/10.1038/s41419-020-03382-0
Drott C, Persson H, Lundholm K. Cardiovascular and metabolic response to adrenaline infusion in weight-losing patients with and without cancer. Clin Physiol. 1989;9(5):427-439. doi: 10.1111/j.1475-097x.1989.tb00997.x. DOI: https://doi.org/10.1111/j.1475-097X.1989.tb00997.x
Molfino A, Carletti R, Imbimbo G, Amabile MI, Belli R, di Gioia CRT, et al. Histomorphological and inflammatory changes of white adipose tissue in gastrointestinal cancer patients with and without cachexia. J Cachexia Sarcopenia Muscle. 2022;13(1):333-342. doi: 10.1002/jcsm.12893. DOI: https://doi.org/10.1002/jcsm.12893
Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 1986;111(1):82-85. doi: 10.1007/BF00402783. DOI: https://doi.org/10.1007/BF00402783
Bing C, Brown M, King P, Collins P, Tisdale MJ, Williams G. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res. 2000;60(9):2405-2410. DOI: https://doi.org/10.1042/cs098001Pa
Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1-2):304-316. doi: 10.1016/j.cell.2013.12.021. DOI: https://doi.org/10.1016/j.cell.2013.12.021
Das S, Morvan F, Morozzi G, Jourde B, Minetti GC, Kahle P, et al. ATP citrate lyase regulates myofiber differentiation and increases regeneration by altering histone acetylation. Cell Rep. 2017;21(11):3003-3011. doi: 10.1016/j.celrep.2017.11.038. DOI: https://doi.org/10.1016/j.celrep.2017.11.038
Laviano A, Seelaender M, Rianda S, Silverio R, Rossi Fanelli F. Neuroinflammation: a contributing factor to the pathogenesis of cancer cachexia. Crit Rev Oncog. 2012;17(3):247-251. doi: 10.1615/critrevoncog.v17.i3.20. DOI: https://doi.org/10.1615/CritRevOncog.v17.i3.20
Grossberg AJ, Scarlett JM, Zhu X, Bowe DD, Batra AK, Braun TP, et al. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology. 2010;151(2):606-616. doi: 10.1210/en.2009-1135. DOI: https://doi.org/10.1210/en.2009-1135
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol. 2022;10:960341. doi: 10.3389/fcell.2022.960341. DOI: https://doi.org/10.3389/fcell.2022.960341
Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83(4):735-43. doi: 10.1093/ajcn/83.4.735. DOI: https://doi.org/10.1093/ajcn/83.4.735
Asakawa A, Fujimiya M, Niijima A, Fujino K, Kodama N, Sato Y, et al. Parathyroid hormone-related protein has an anorexigenic activity via activation of hypothalamic urocortins 2 and 3. Psychoneuroendocrinology. 2010;35(8):1178-1186. doi: 10.1016/j.psyneuen.2010.02.003. DOI: https://doi.org/10.1016/j.psyneuen.2010.02.003
Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100-104. doi: 10.1038/nature13528. DOI: https://doi.org/10.1038/nature13528
Tisdale MJ. Cancer anorexia and cachexia. Nutrition. 2001;17(5):438-442. doi: 10.1016/s0899-9007(01)00506-8. DOI: https://doi.org/10.1016/S0899-9007(01)00506-8
Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649-661. doi: 10.1016/s0896-6273(03)00063-1. DOI: https://doi.org/10.1016/S0896-6273(03)00063-1
Dwarkasing JT, van Dijk M, Dijk FJ, Boekschoten MV, Faber J, Argilès JM, et al. Hypothalamic food intake regulation in a cancer-cachectic mouse model. J Cachexia Sarcopenia Muscle. 2014;5(2):159-169. doi: 10.1007/s13539-013-0121-y. DOI: https://doi.org/10.1007/s13539-013-0121-y
Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, Cherbuy C, et al. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget. 2018;9(26):18224-18238. doi: 10.18632/oncotarget.24804. DOI: https://doi.org/10.18632/oncotarget.24804
Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188359. doi: 10.1016/j.bbcan.2020.188359. DOI: https://doi.org/10.1016/j.bbcan.2020.188359
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi: 10.1038/nature05414. DOI: https://doi.org/10.1038/nature05414
Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol. 2013;45(10):2186-2190. doi: 10.1016/j.biocel.2013.06.021. DOI: https://doi.org/10.1016/j.biocel.2013.06.021
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41-50. doi: 10.1016/j.cmet.2016.05.005. DOI: https://doi.org/10.1016/j.cmet.2016.05.005
Shum AM, Fung DC, Corley SM, McGill MC, Bentley NL, Tan TC, et al. Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia. Physiol Genomics. 2015;47(12):588-599. doi: 10.1152/physiolgenomics.00128.2014. DOI: https://doi.org/10.1152/physiolgenomics.00128.2014
Belloum Y, Rannou-Bekono F, Favier FB. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep. 2017;37(5):2543-2552. doi: 10.3892/or.2017.5542. DOI: https://doi.org/10.3892/or.2017.5542
Rausch V, Sala V, Penna F, Porporato PE, Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis. 2021;10(1):1. doi: 10.1038/s41389-020-00288-6. DOI: https://doi.org/10.1038/s41389-020-00288-6
Bordignon C, Dos Santos BS, Rosa DD. Impact of cancer cachexia on cardiac and skeletal muscle: Role of exercise training. Cancers (Basel). 2022;14(2):342. doi: 10.3390/cancers14020342. DOI: https://doi.org/10.3390/cancers14020342
Lim S, Brown JL, Washington TA, Greene NP. Development and progression of cancer cachexia: Perspectives from bench to bedside. Sports Med Health Sci. 2020;2(4):177-185. doi: 10.1016/j.smhs.2020.10.003. DOI: https://doi.org/10.1016/j.smhs.2020.10.003
Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol. 2016;310(4):H466-477. doi: 10.1152/ajpheart.00720.2015. DOI: https://doi.org/10.1152/ajpheart.00720.2015
Waning DL, Guise TA. Cancer-associated muscle weakness: What's bone got to do with it? Bonekey Rep. 2015;4:691. doi: 10.1038/bonekey.2015.59. DOI: https://doi.org/10.1038/bonekey.2015.59
Narsale AA, Enos RT, Puppa MJ, Chatterjee S, Murphy EA, Fayad R, et al. Liver inflammation and metabolic signaling in ApcMin/+ mice: the role of cachexia progression. PLoS One. 2015 Mar 19;10(3):e0119888. doi: 10.1371/journal.pone.0119888. DOI: https://doi.org/10.1371/journal.pone.0119888
Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev. 2016;30(5):489-501. doi: 10.1101/gad.276733.115. DOI: https://doi.org/10.1101/gad.276733.115
Rosa-Caldwell ME, Brown JL, Lee DE, Wiggs MP, Perry RA, Haynie WS, et al. Hepatic alterations during the development and progression of cancer cachexia. Appl Physiol Nutr Metab. 2020;45(5):500-512. doi: 10.1139/apnm-2019-0407. DOI: https://doi.org/10.1139/apnm-2019-0407
Bongaerts GP, van Halteren HK, Verhagen CA, Wagener DJ. Cancer cachexia demonstrates the energetic impact of gluconeogenesis in human metabolism. Med Hypotheses. 2006;67(5):1213-1222. doi: 10.1016/j.mehy.2006.04.048. DOI: https://doi.org/10.1016/j.mehy.2006.04.048
Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5(2):e200. doi: 10.1038/oncsis.2016.3. DOI: https://doi.org/10.1038/oncsis.2016.3
Vujasinovic M, Valente R, Del Chiaro M, Permert J, Löhr JM. Pancreatic Exocrine Insufficiency in Pancreatic Cancer. Nutrients. 2017;9(3):183. doi: 10.3390/nu9030183. DOI: https://doi.org/10.3390/nu9030183
Honors MA, Kinzig KP. The role of insulin resistance in the development of muscle wasting during cancer cachexia. J Cachexia Sarcopenia Muscle. 2012;3(1):5-11. doi: 10.1007/s13539-011-0051-5. DOI: https://doi.org/10.1007/s13539-011-0051-5
Asp ML, Tian M, Wendel AA, Belury MA. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer. 2010;126(3):756-763. doi: 10.1002/ijc.24784. DOI: https://doi.org/10.1002/ijc.24784
Asp ML, Tian M, Kliewer KL, Belury MA. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia. Cancer Biol Ther. 2011;12(11):957-965. doi: 10.4161/cbt.12.11.18134. DOI: https://doi.org/10.4161/cbt.12.11.18134
Hegde M, Daimary UD, Girisa S, Kumar A, Kunnumakkara AB. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp Biol Med (Maywood). 2022;247(9):713-733. doi: 10.1177/15353702221087962. DOI: https://doi.org/10.1177/15353702221087962
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular mechanisms of cachexia: A review. Cells. 2024;13(3):252. doi: 10.3390/cells13030252. DOI: https://doi.org/10.3390/cells13030252
Durham WJ, Dillon EL, Sheffield-Moore M. Inflammatory burden and amino acid metabolism in cancer cachexia. Curr Opin Clin Nutr Metab Care. 2009;12(1):72-77. doi: 10.1097/MCO.0b013e32831cef61. DOI: https://doi.org/10.1097/MCO.0b013e32831cef61
Banduseela V, Ochala J, Lamberg K, Kalimo H, Larsson L. Muscle paralysis and myosin loss in a patient with cancer cachexia. Acta Myol. 2007;26(3):136-144.
Miyamoto Y, Hanna DL, Zhang W, Baba H, Lenz HJ. Molecular pathways: Cachexia signaling-A targeted approach to cancer treatment. Clin Cancer Res. 2016;22(16):3999-4004. doi: 10.1158/1078-0432.CCR-16-0495. DOI: https://doi.org/10.1158/1078-0432.CCR-16-0495
Pradhan R, Dieterich W, Natarajan A, Schwappacher R, Reljic D, Herrmann HJ, et al. Influence of amino acids and exercise on muscle protein turnover, particularly in cancer cachexia. Cancers (Basel). 2024;16(10):1921. doi: 10.3390/cancers16101921. DOI: https://doi.org/10.3390/cancers16101921
Argilés JM, López-Soriano FJ. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states. Trends Pharmacol Sci. 1996;17(6):223-226. doi: 10.1016/0165-6147(96)10021-3. DOI: https://doi.org/10.1016/0165-6147(96)10021-3
Glass DJ. Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care. 2010;13(3):225-229. doi: 10.1097/mco.0b013e32833862df. DOI: https://doi.org/10.1097/MCO.0b013e32833862df
Miao C, Zhang W, Feng L, Gu X, Shen Q, Lu S, et al. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids. 2021;24:923-938. doi: 10.1016/j.omtn.2021.04.015. DOI: https://doi.org/10.1016/j.omtn.2021.04.015
McFarlane C, Sharma M, Kambadur R. Myostatin is a procachectic growth factor during postnatal myogenesis. Curr Opin Clin Nutr Metab Care. 2008;11(4):422-427. doi: 10.1097/MCO.0b013e32830007e2. DOI: https://doi.org/10.1097/MCO.0b013e32830007e2
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, et al. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Longev. 2018;2018:2063179. doi: 10.1155/2018/2063179. DOI: https://doi.org/10.1155/2018/2063179
Kramer PA, Duan J, Qian WJ, Marcinek DJ. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol. 2015;6:347. doi: 10.3389/fphys.2015.00347. DOI: https://doi.org/10.3389/fphys.2015.00347
Penna F, Ballarò R, Beltrà M, De Lucia S, García Castillo L, et al. The skeletal muscle as an active player against cancer cachexia. Front Physiol. 2019;10:41. doi: 10.3389/fphys.2019.00041. DOI: https://doi.org/10.3389/fphys.2019.00041
Matamoros MA, Becana M. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. J Exp Bot. 2021;72(16):5876-5892. doi: 10.1093/jxb/erab008. DOI: https://doi.org/10.1093/jxb/erab008
Busquets S, Deans C, Figueras M, Moore-Carrasco R, López-Soriano FJ, Fearon KC, et al. Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr. 2007;26(5):614-618. doi: 10.1016/j.clnu.2007.06.005. DOI: https://doi.org/10.1016/j.clnu.2007.06.005
de Castro GS, Simoes E, Lima JDCC, Ortiz-Silva M, Festuccia WT, Tokeshi F et al. Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle. Cancers (Basel). 2019 Aug 28;11(9):1264. doi: 10.3390/cancers11091264. PMID: 31466311; PMCID: PMC6770124. DOI: https://doi.org/10.3390/cancers11091264
Biolo G, Declan Fleming RY, Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest. 1995;95(2):811-819. doi: 10.1172/JCI117731. DOI: https://doi.org/10.1172/JCI117731
Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenter Enteral Nutr. 2021;45(S2):16-25. doi: 10.1002/jpen.2287. DOI: https://doi.org/10.1002/jpen.2287
Capra S, Ferguson M, Ried K. Cancer: impact of nutrition intervention outcome--nutrition issues for patients. Nutrition. 2001;17(9):769-772. doi: 10.1016/s0899-9007(01)00632-3. DOI: https://doi.org/10.1016/S0899-9007(01)00632-3
Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle. 2015;6(4):287-302. doi: 10.1002/jcsm.12059. DOI: https://doi.org/10.1002/jcsm.12059
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional interventions in cancer cachexia: Evidence and perspectives from experimental models. Front Nutr. 2020;7:601329. doi: 10.3389/fnut.2020.601329. DOI: https://doi.org/10.3389/fnut.2020.601329
Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994;91(11):4854-4858. doi: 10.1073/pnas.91.11.4854. DOI: https://doi.org/10.1073/pnas.91.11.4854
Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A. Cancer cachexia--pathophysiology and management. J Gastroenterol. 2013;48(5):574-594. doi: 10.1007/s00535-013-0787-0. DOI: https://doi.org/10.1007/s00535-013-0787-0
Inui A. Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin. 2002;52(2):72-91. doi: 10.3322/canjclin.52.2.72. DOI: https://doi.org/10.3322/canjclin.52.2.72
Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H. Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr. 2006;136(1 Suppl):234S-236S. doi: 10.1093/jn/136.1.234S. DOI: https://doi.org/10.1093/jn/136.1.234S
Eley HL, Russell ST, Tisdale MJ. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J. 2007;407(1):113-120. doi: 10.1042/BJ20070651. DOI: https://doi.org/10.1042/BJ20070651
Nicastro H, da Luz CR, Chaves DF, Bechara LR, Voltarelli VA, Rogero MM, et al. Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J Nutr Metab. 2012;2012:136937. doi: 10.1155/2012/136937. DOI: https://doi.org/10.1155/2012/136937
Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem.1997.8.300-311. DOI: https://doi.org/10.1016/S0955-2863(97)00048-X
Yu JC, Jiang ZM, Li DM. Glutamine: a precursor of glutathione and its effect on liver. World J Gastroenterol. 1999 Apr;5(2):143-146. doi: 10.3748/wjg.v5.i2.143. PMID: 11819414; PMCID: PMC4688527. DOI: https://doi.org/10.3748/wjg.v5.i2.143
Bode BP, Fischer C, Abcouwer S, Wasa M, Souba WW, (Eds.)), Glutamine and cancer cachexia. Protein and amino acid metabolism in cancer cachexia. Berlin: Springer Berlin Heidelberg (1996). 139-170. doi: 10.1007/978-3-662-22346-8-11. DOI: https://doi.org/10.1007/978-3-662-22346-8_11
Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, et al. L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care. 2003;6(2):229-240. doi: 10.1097/00075197-200303000-00013. DOI: https://doi.org/10.1097/00075197-200303000-00013
Rose ML, Cattley RC, Dunn C, Wong V, Li X, Thurman RG. Dietary glycine prevents the development of liver tumors caused by the peroxisome proliferator WY-14,643. Carcinogenesis. 1999;20(11):2075-2081. doi: 10.1093/carcin/20.11.2075. DOI: https://doi.org/10.1093/carcin/20.11.2075
Rose ML, Madren J, Bunzendahl H, Thurman RG. Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis. 1999;20(5):793-798. doi: 10.1093/carcin/20.5.793. DOI: https://doi.org/10.1093/carcin/20.5.793
Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010;126(12):2762-272. doi: 10.1002/ijc.25202. DOI: https://doi.org/10.1002/ijc.25202
Crowell JA, Steele VE, Sigman CC, Fay JR. Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther. 2003;2(8):815-823. PMID: 12939472.
Agulló-Ortuño MT, Mancebo E, Grau M, Núñez Sobrino JA, Paz-Ares L, López-Martín JA, et al. Tryptophan modulation in cancer-associated cachexia mouse models. Int J Mol Sci. 2023;24(16):13005. doi: 10.3390/ijms241613005. DOI: https://doi.org/10.3390/ijms241613005
Carreiro AL, Buhman KK. Absorption of dietary fat and its metabolism in enterocytes. In: Payel VB, (Ed.), The Molecular Nutrition of Fats, Academic Press (2019). 33-48. doi: 10.1016/B978-0-12-811297-7.00003-2. DOI: https://doi.org/10.1016/B978-0-12-811297-7.00003-2
Allen BG, Bhatia SK, Anderson CM, Eichenberger-Gilmore JM, Sibenaller ZA, Mapuskar KA, et al. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol. 2014;2:963-970. doi: 10.1016/j.redox.2014.08.002. DOI: https://doi.org/10.1016/j.redox.2014.08.002
Liberti MV, Locasale JW. The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211-218. doi: 10.1016/j.tibs.2015.12.001. DOI: https://doi.org/10.1016/j.tibs.2015.12.001
Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141(3):272-282. doi: 10.1016/j.pharmthera.2013.10.010. DOI: https://doi.org/10.1016/j.pharmthera.2013.10.010
Tisdale MJ, Dhesi JK. Inhibition of weight loss by omega-3 fatty acids in an experimental cachexia model. Cancer Res. 1990;50(16):5022-5026. PMID: 2379167.
Pariza MW, Ha YL. Conjugated dienoic derivatives of linoleic acid: a new class of anticarcinogens. Med Oncol Tumor Pharmacother. 1990;7(2-3):169-171. doi: 10.1007/BF02988544. DOI: https://doi.org/10.1007/BF02988544
Radbruch L, Elsner F, Trottenberg P, Strasser F, Baracos V, Fearon K: Clinical practice guidelines on cancer cachexia in advanced cancer patients with a focus on refractory cachexia: European Clinical Guidelines. Department of Palliative Medicine/European Palliative Care Research Collaborative, 2010.
Ardies CM. Exercise, cachexia, and cancer therapy: a molecular rationale. Nutr Cancer. 2002;42(2):143-157. doi: 10.1207/S15327914NC422_1. DOI: https://doi.org/10.1207/S15327914NC422_1
Al-Majid S, McCarthy DO. Cancer-induced fatigue and skeletal muscle wasting: the role of exercise. Biol Res Nurs. 2001;2(3):186-197. doi: 10.1177/109980040100200304. DOI: https://doi.org/10.1177/109980040100200304
Goh J, Niksirat N, Campbell KL. Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines. Am J Transl Res. 2014;6(5):422-38. PMID: 25360210.
Repka CP, Hayward R. Oxidative dtress and fitness changes in cancer patients after exercise training. Med Sci Sports Exerc. 2016;48(4):607-614. doi: 10.1249/MSS.0000000000000821. DOI: https://doi.org/10.1249/MSS.0000000000000821
Padilha CS, Cella PS, Chimin P, Voltarelli FA, Marinello PC, Testa MTJ, et al. Resistance training's ability to prevent cancer-induced muscle atrophy extends anabolic stimulus. Med Sci Sports Exerc. 2021;53(8):1572-1582. doi: 10.1249/MSS.0000000000002624. DOI: https://doi.org/10.1249/MSS.0000000000002624
Wiskemann J, Clauss D, Tjaden C, Hackert T, Schneider L, Ulrich CM, et al. Progressive resistance training to impact physical fitness and body weight in pancreatic cancer patients: A randomized controlled trial. Pancreas. 2019;48(2):257-266. doi: 10.1097/MPA.0000000000001221. DOI: https://doi.org/10.1097/MPA.0000000000001221
Rosebrock K, Sinn M, Uzunoglu FG, Bokemeyer C, Jensen W, Salchow J. Effects of exercise training on patient-specific outcomes in pancreatic cancer patients: A scoping review. Cancers (Basel). 2023;15(24):5899. doi: 10.3390/cancers15245899. DOI: https://doi.org/10.3390/cancers15245899
Paulsen O, Klepstad P, Rosland JH, Aass N, Albert E, Fayers P, et al. Efficacy of methylprednisolone on pain, fatigue, and appetite loss in patients with advanced cancer using opioids: a randomized, placebo-controlled, double-blind trial. J Clin Oncol. 2014;32(29):3221-3228. doi: 10.1200/JCO.2013.54.3926. DOI: https://doi.org/10.1200/JCO.2013.54.3926
Ruiz-García V, Juan O, Pérez Hoyos S, Peiró R, Ramón N, Rosero MA, et al. Megestrol acetate: a systematic review usefulness about the weight gain in neoplastic patients with cachexia. Med Clin (Barc). 2002;119(5):166-170. doi: 10.1016/s0025-7753(02)73352-6. DOI: https://doi.org/10.1016/S0025-7753(02)73352-6
Solheim TS, Fearon KC, Blum D, Kaasa S. Non-steroidal anti-inflammatory treatment in cancer cachexia: a systematic literature review. Acta Oncol. 2013;52(1):6-17. doi: 10.3109/0284186X.2012.724536. DOI: https://doi.org/10.3109/0284186X.2012.724536
Naing A, Dalal S, Abdelrahim M, Wheeler J, Hess K, Fu S, et al. Olanzapine for cachexia in patients with advanced cancer: an exploratory study of effects on weight and metabolic cytokines. Support Care Cancer. 2015;23:2649–2654. doi: 10.1007/s00520-015-2625-9. DOI: https://doi.org/10.1007/s00520-015-2625-9
Yennurajalingam S, Willey JS, Palmer JL, Allo J, Del Fabbro E, Cohen EN, et al. The role of thalidomide and placebo for the treatment of cancer-related anorexia-cachexia symptoms: results of a double-blind placebo-controlled randomized study. J Palliat Med. 2012;15(10):1059-1064. doi: 10.1089/jpm.2012.0146. DOI: https://doi.org/10.1089/jpm.2012.0146
Crawford J, Prado CM, Johnston MA, Gralla RJ, Taylor RP, Hancock ML, et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients. Curr Oncol Rep. 2016;18(6):37. doi: 10.1007/s11912-016-0522-0. DOI: https://doi.org/10.1007/s11912-016-0522-0
Stewart Coats AJ, Ho GF, Prabhash K, von Haehling S, Tilson J, Brown R, et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J Cachexia Sarcopenia Muscle. 2016;7(3):355-365. doi: 10.1002/jcsm.12126. DOI: https://doi.org/10.1002/jcsm.12126
Han HQ, Mitch WE. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr Opin Support Palliat Care. 2011;5(4):334-341. doi: 10.1097/SPC.0b013e32834bddf9. DOI: https://doi.org/10.1097/SPC.0b013e32834bddf9
Kim-Muller JY, Song L, LaCarubba Paulhus B, Pashos E, Li X, Rinaldi A, et al. GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep. 2023;42(1):111947. doi: 10.1016/j.celrep.2022.111947. DOI: https://doi.org/10.1016/j.celrep.2022.111947
Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016;17(4):519-531. doi: 10.1016/S1470-2045(15)00558-6. DOI: https://doi.org/10.1016/S1470-2045(15)00558-6

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).