The Diverse Roles of the Tumour Microenvironment in Carcinogenesis

Authors

  • Ismail Ibrahim Al-Janabi Retired Academic, Freelance Consultant Pharmacist and Science Writer, Epsom, Surrey, UK

DOI:

https://doi.org/10.54133/ajms.v7i2.1464

Keywords:

Carcinogenesis, Extracellular matrix, Stromal cells, Tumor microenvironment

Abstract

Cancer progression heavily relies on the tumor microenvironment (TME), and therapeutic targeting of its components could aid in cancer management. This narrative review highlights the different parts of TME and charts potential targets for cancer therapy. Overall, the influence of the various components of the microenvironment is that of tumor support through immunosuppression, particularly as cancer progresses beyond initiation. Targeting the supporting elements of the TME for therapeutic benefit is possible after a detailed evaluation of the cancer type and stage. Several therapeutic modalities are already well established, and more preclinical and clinical studies are underway.

Downloads

Download data is not yet available.

References

Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921-R925. doi: 10.1016/j.cub.2020.06.081. DOI: https://doi.org/10.1016/j.cub.2020.06.081

Bejarano L, Jordāo MJC, Joyce JA. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021;11(4):933-959. doi: 10.1158/2159-8290.CD-20-1808. DOI: https://doi.org/10.1158/2159-8290.CD-20-1808

Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci. 2022 Oct 17;29(1):83. doi: 10.1186/s12929-022-00866-3. PMID: 36253762; PMCID: PMC9575280. DOI: https://doi.org/10.1186/s12929-022-00866-3

Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309-22. doi: 10.1016/j.ccr.2012.02.022. DOI: https://doi.org/10.1016/j.ccr.2012.02.022

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-1437. doi: 10.1038/nm.3394. DOI: https://doi.org/10.1038/nm.3394

Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19-20):1267-1284. doi: 10.1101/gad.314617.118. DOI: https://doi.org/10.1101/gad.314617.118

Truffi M, Sorrentino L, Corsi F. Fibroblasts in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1234:15-29. doi: 10.1007/978-3-030-37184-5_2. DOI: https://doi.org/10.1007/978-3-030-37184-5_2

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013. DOI: https://doi.org/10.1016/j.cell.2011.02.013

Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239-252. doi: 10.1038/nrc2618. DOI: https://doi.org/10.1038/nrc2618

Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. doi: 10.1186/s12964-020-0530-4. DOI: https://doi.org/10.1186/s12964-020-0530-4

Bożyk A, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Tumor microenvironment-A short review of cellular and interaction diversity. Biology (Basel). 2022;11(6):929. doi: 10.3390/biology11060929. DOI: https://doi.org/10.3390/biology11060929

Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84. doi: 10.1186/s13058-016-0740-2. DOI: https://doi.org/10.1186/s13058-016-0740-2

Arneth B. Tumor Microenvironment. Medicina (Kaunas). 2019;56(1):15. doi: 10.3390/medicina56010015. DOI: https://doi.org/10.3390/medicina56010015

Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591-5596. doi: 10.1242/jcs.116392. DOI: https://doi.org/10.1242/jcs.116392

Yang D, Guo P, He T, Powell CA. Role of endothelial cells in tumor microenvironment. Clin Transl Med. 2021;11(6):e450. doi: 10.1002/ctm2.450. DOI: https://doi.org/10.1002/ctm2.450

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174-186. doi: 10.1038/s41568-019-0238-1. DOI: https://doi.org/10.1038/s41568-019-0238-1

Pallegar NK, Christian SL. Adipocytes in the tumour microenvironment. Adv Exp Med Biol. 2020;1234:1-13. doi: 10.1007/978-3-030-37184-5_1. DOI: https://doi.org/10.1007/978-3-030-37184-5_1

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-899. doi: 10.1016/j.cell.2010.01.025. DOI: https://doi.org/10.1016/j.cell.2010.01.025

Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41-48. doi: 10.1016/j.copbio.2016.02.007. DOI: https://doi.org/10.1016/j.copbio.2016.02.007

Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. doi: 10.3389/fmolb.2019.00160. DOI: https://doi.org/10.3389/fmolb.2019.00160

Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb). 2015;7(10):1120-1134. doi: 10.1039/c5ib00040h. DOI: https://doi.org/10.1039/c5ib00040h

Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090. DOI: https://doi.org/10.1016/j.ejphar.2020.173090

Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485-503. doi: 10.1038/s41568-020-0281-y. DOI: https://doi.org/10.1038/s41568-020-0281-y

Chung JY, Tang PC, Chan MK, Xue VW, Huang XR, Ng CS, et al. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nat Commun. 2023;14(1):1794. doi: 10.1038/s41467-023-37515-8. DOI: https://doi.org/10.1038/s41467-023-37515-8

Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-mediated neutrophil polarization and therapeutic implications. Int J Mol Sci. 2022;23(6):3218. doi: 10.3390/ijms23063218. DOI: https://doi.org/10.3390/ijms23063218

Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124(2):359-367. doi: 10.1038/s41416-020-01048-4. DOI: https://doi.org/10.1038/s41416-020-01048-4

Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19(1):120. doi: 10.1186/s12943-020-01238-x. DOI: https://doi.org/10.1186/s12943-020-01238-x

Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. 2023;20(5):432-447. doi: 10.1038/s41423-023-00990-6. DOI: https://doi.org/10.1038/s41423-023-00990-6

Sui H, Dongye S, Liu X, Xu X, Wang L, Jin CQ, et al. Immunotherapy of targeting MDSCs in tumor microenvironment. Front Immunol. 2022;13:990463. doi: 10.3389/fimmu.2022.990463. DOI: https://doi.org/10.3389/fimmu.2022.990463

Malla RR, Vasudevaraju P, Vempati RK, Rakshmitha M, Merchant N, Nagaraju GP. Regulatory T cells: Their role in triple-negative breast cancer progression and metastasis. Cancer. 2022;128(6):1171-1183. doi: 10.1002/cncr.34084. DOI: https://doi.org/10.1002/cncr.34084

Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the tumor microenvironment: Shield or spear? Int J Mol Sci. 2018;19(5):1532. doi: 10.3390/ijms19051532. DOI: https://doi.org/10.3390/ijms19051532

Yao H, He S. Multi‑faceted role of cancer‑associated adipocytes in the tumor microenvironment. Mol Med Rep. 202124(6):866. doi: 10.3892/mmr.2021.12506. DOI: https://doi.org/10.3892/mmr.2021.12506

Babar Q, Saeed A, Tabish TA, Sarwar M, Thorat ND. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis. 2023;1869(6):166746. doi: 10.1016/j.bbadis.2023.166746. DOI: https://doi.org/10.1016/j.bbadis.2023.166746

Zheng R, Li F, Li F, Gong A. Targeting tumor vascularization: promising strategies for vascular normalization. J Cancer Res Clin Oncol. 2021;147(9):2489-2505. doi: 10.1007/s00432-021-03701-8. DOI: https://doi.org/10.1007/s00432-021-03701-8

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-264. doi: 10.1038/nrc3239. DOI: https://doi.org/10.1038/nrc3239

Sznol M, Melero I. Revisiting anti-CTLA-4 antibodies in combination with PD-1 blockade for cancer immunotherapy. Ann Oncol. 2021;32(3):295-297. doi: 10.1016/j.annonc.2020.11.018. DOI: https://doi.org/10.1016/j.annonc.2020.11.018

Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol. 2022;13:992762. doi: 10.3389/fimmu.2022.992762. DOI: https://doi.org/10.3389/fimmu.2022.992762

Schöffski P, Tan DSW, Martín M, Ochoa-de-Olza M, Sarantopoulos J, Carvajal RD, et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J Immunother Cancer. 2022;10(2):e003776. doi: 10.1136/jitc-2021-003776. DOI: https://doi.org/10.1136/jitc-2021-003776

Tian T, Li Z. Targeting tim-3 in cancer With Resistance to PD-1/PD-L1 Blockade. Front Oncol. 2021;11:731175. doi: 10.3389/fonc.2021.731175. DOI: https://doi.org/10.3389/fonc.2021.731175

Rodríguez-Abreu D, Johnson ML, Hussein MA, Cobo M, Patel AJ, Secen N, et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol. 2020;38:9503-9503. DOI: https://doi.org/10.1200/JCO.2020.38.15_suppl.9503

Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B, Jalali SA. VISTA and its ligands: the next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int. 2023;23(1):265. doi: 10.1186/s12935-023-03116-0. DOI: https://doi.org/10.1186/s12935-023-03116-0

Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257(1):56-71. doi: 10.1111/imr.12132. DOI: https://doi.org/10.1111/imr.12132

Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550-4557. doi: 10.1158/1078-0432.CCR-11-0116. DOI: https://doi.org/10.1158/1078-0432.CCR-11-0116

Al-Janabi II. CAR-T cell therapy for cancer. Al-Rafidain J Med Sci. 2024;6:21-31. doi: 10.54133/ajms.v6i2.726. DOI: https://doi.org/10.54133/ajms.v6i2.726

Zhang L, Chu J, Yu J, Wei W. Cellular and molecular mechanisms in graft-versus-host disease. J Leukoc Biol. 2016;99(2):279-287. doi: 10.1189/jlb.4RU0615-254RR. DOI: https://doi.org/10.1189/jlb.4RU0615-254RR

Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553. doi: 10.1056/NEJMoa1910607. DOI: https://doi.org/10.1056/NEJMoa1910607

Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899-911. doi: 10.1016/j.immuni.2009.03.019. DOI: https://doi.org/10.1016/j.immuni.2009.03.019

Jing Y, Xu F, Liang W, Liu J, Zhang L. Role of regulatory B cells in gastric cancer: Latest evidence and therapeutics strategies. Int Immunopharmacol. 2021;96:107581. doi: 10.1016/j.intimp.2021.107581. DOI: https://doi.org/10.1016/j.intimp.2021.107581

Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol. 2017;14(8):662-674. doi: 10.1038/cmi.2017.35. Epub 2017 Jun 19. PMID: 28626234; PMCID: PMC5549607. DOI: https://doi.org/10.1038/cmi.2017.35

Zanna MY, Yasmin AR, Omar AR, Arshad SS, Mariatulqabtiah AR, Nur-Fazila SH, et al. Review of dendritic cells, their role in clinical immunology, and distribution in various animal species. Int J Mol Sci. 2021;22(15):8044. doi: 10.3390/ijms22158044. DOI: https://doi.org/10.3390/ijms22158044

Russo E, Laffranchi M, Tomaipitinca L, Del Prete A, Santoni A, Sozzani S, et al. NK Cell anti-tumor surveillance in a myeloid cell-shaped environment. Front Immunol. 2021;12:787116. doi: 10.3389/fimmu.2021.787116. DOI: https://doi.org/10.3389/fimmu.2021.787116

Sabado RL, Bhardwaj N. Dendritic cell immunotherapy. Ann N Y Acad Sci. 2013;1284:31-45. doi: 10.1111/nyas.12125. DOI: https://doi.org/10.1111/nyas.12125

Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206-221. doi: 10.1016/j.addr.2017.04.010. DOI: https://doi.org/10.1016/j.addr.2017.04.010

Raskov H, Orhan A, Gaggar S, Gögenur I. Cancer-associated fibroblasts and tumor-associated macrophages in cancer and cancer immunotherapy. Front Oncol. 2021;11:668731. doi: 10.3389/fonc.2021.668731. DOI: https://doi.org/10.3389/fonc.2021.668731

Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021;81(5):1201-1208. doi: 10.1158/0008-5472.CAN-20-2990. DOI: https://doi.org/10.1158/0008-5472.CAN-20-2990

Bart VMT, Pickering RJ, Taylor PR, Ipseiz N. Macrophage reprogramming for therapy. Immunology. 2021;163(2):128-144. doi: 10.1111/imm.13300. DOI: https://doi.org/10.1111/imm.13300

Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, et al. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther. 2021;20(8):1388-1399. doi: 10.1158/1535-7163.MCT-20-0591. DOI: https://doi.org/10.1158/1535-7163.MCT-20-0591

Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res. 2023;11(1):103. doi: 10.1186/s40364-023-00537-x. DOI: https://doi.org/10.1186/s40364-023-00537-x

Kim EY, Abdul-Ghafar J, Chong Y, Yim K. Calculated tumor-associated neutrophils are associated with the tumor-stroma ratio and predict a poor prognosis in advanced gastric cancer. Biomedicines. 2022;10(3):708. doi: 10.3390/biomedicines10030708. DOI: https://doi.org/10.3390/biomedicines10030708

Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133(20):2159-2167. doi: 10.1182/blood-2018-11-844548. DOI: https://doi.org/10.1182/blood-2018-11-844548

Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345-348. doi: 10.1038/nature14282. DOI: https://doi.org/10.1038/nature14282

Yeo B, Redfern AD, Mouchemore KA, Hamilton JA, Anderson RL. The dark side of granulocyte-colony stimulating factor: a supportive therapy with potential to promote tumour progression. Clin Exp Metastasis. 2018;35(4):255-267. doi: 10.1007/s10585-018-9917-7. DOI: https://doi.org/10.1007/s10585-018-9917-7

Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, Akporiaye ET. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ T cells. J Transl Med. 2019;17(1):219. doi: 10.1186/s12967-019-1967-3. DOI: https://doi.org/10.1186/s12967-019-1967-3

Devillier R, Chrétien AS, Pagliardini T, Salem N, Blaise D, Olive D. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. J Leukoc Biol. 2021;109(6):1071-1088. doi: 10.1002/JLB.5MR0920-198RR. DOI: https://doi.org/10.1002/JLB.5MR0920-198RR

Hu Z, Xu X, Wei H. The adverse impact of tumor microenvironment on NK-Cell. Front Immunol. 2021;12:633361. doi: 10.3389/fimmu.2021.633361. DOI: https://doi.org/10.3389/fimmu.2021.633361

Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654-4668. doi: 10.1172/JCI99317. DOI: https://doi.org/10.1172/JCI99317

Oyer JL, Gitto SB, Altomare DA, Copik AJ. PD-L1 blockade enhances anti-tumor efficacy of NK cells. Oncoimmunology. 2018;7(11):e1509819. doi: 10.1080/2162402X.2018.1509819. DOI: https://doi.org/10.1080/2162402X.2018.1509819

Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 2020;9(3):561. doi: 10.3390/cells9030561. DOI: https://doi.org/10.3390/cells9030561

Sun L, Clavijo PE, Robbins Y, Patel P, Friedman J, Greene S, et al. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight. 2019;4(7):e126853. doi: 10.1172/jci.insight.126853. DOI: https://doi.org/10.1172/jci.insight.126853

Bullock K, Richmond A. Suppressing MDSC recruitment to the tumor microenvironment by antagonizing CXCR2 to enhance the efficacy of immunotherapy. Cancers (Basel). 2021;13(24):6293. doi: 10.3390/cancers13246293. DOI: https://doi.org/10.3390/cancers13246293

Hemmatazad H, Berger MD. CCR5 is a potential therapeutic target for cancer. Expert Opin Ther Targets. 2021;25(4):311-327. doi: 10.1080/14728222.2021.1902505. DOI: https://doi.org/10.1080/14728222.2021.1902505

Lin F, Chen H, Jiang T, Zheng J, Liu Q, Yang B, et al. The effect of low-dose chemotherapy on the tumor microenvironment and its antitumor activity combined with anti-PD-1 antibody. Immunotherapy. 2022. doi: 10.2217/imt-2021-0018. DOI: https://doi.org/10.2217/imt-2021-0018

Tobin RP, Jordan KR, Robinson WA, Davis D, Borges VF, Gonzalez R, et al. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int Immunopharmacol. 2018 Oct;63:282-291. doi: 10.1016/j.intimp.2018.08.007. DOI: https://doi.org/10.1016/j.intimp.2018.08.007

Chen H, Jiang T, Lin F, Guan H, Zheng J, Liu Q, et al. PD-1 inhibitor combined with apatinib modulate the tumor microenvironment and potentiate anti-tumor effect in mice bearing gastric cancer. Int Immunopharmacol. 2021;99:107929. doi: 10.1016/j.intimp.2021.107929. DOI: https://doi.org/10.1016/j.intimp.2021.107929

Tai LH, Alkayyal AA, Leslie AL, Sahi S, Bennett S, Tanese de Souza C, et al. Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of Natural Killer cell cytotoxicity. Oncoimmunology. 2018;7(6):e1431082. doi: 10.1080/2162402X.2018.1431082. DOI: https://doi.org/10.1080/2162402X.2018.1431082

Zhang T, Xiong H, Ma X, Gao Y, Xue P, Kang Y, et al. Supramolecular tadalafil nanovaccine for cancer immunotherapy by alleviating myeloid-derived suppressor cells and heightening immunogenicity. Small Methods. 2021;5(6):e2100115. doi: 10.1002/smtd.202100115. DOI: https://doi.org/10.1002/smtd.202100115

Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, et al. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer. 2010;10:464. doi: 10.1186/1471-2407-10-464. DOI: https://doi.org/10.1186/1471-2407-10-464

Kumar A, Watkins R, Vilgelm AE. Cell therapy with TILs: Training and taming T cells to fight cancer. Front Immunol. 2021;12:690499. doi: 10.3389/fimmu.2021.690499. DOI: https://doi.org/10.3389/fimmu.2021.690499

Rodríguez Pérez Á, Campillo-Davo D, Van Tendeloo VFI, Benítez-Ribas D. Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment. Clin Transl Oncol. 2020;22(11):1923-1937. doi: 10.1007/s12094-020-02344-4. DOI: https://doi.org/10.1007/s12094-020-02344-4

Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080-2089. doi: 10.1111/cas.14069. DOI: https://doi.org/10.1111/cas.14069

Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947-953. doi: 10.1038/s41587-020-0462-y. DOI: https://doi.org/10.1038/s41587-020-0462-y

Ai L, Chen J, Yan H, He Q, Luo P, Xu Z, et al. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des Devel Ther. 2020;14:3625-3649. doi: 10.2147/DDDT.S267433. DOI: https://doi.org/10.2147/DDDT.S267433

Al-Janabi I. Response challenges to cancer immunotherapies. Al-Rafidain J Med Sci. 2022;2:51–80. doi: 10.54133/ajms.v2i.65. DOI: https://doi.org/10.54133/ajms.v2i.65

Mansh M. Ipilimumab and cancer immunotherapy: a new hope for advanced stage melanoma. Yale J Biol Med. 2011;84(4):381-389. PMID: 22180676.

Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, et al. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis. 2024;15(1):17. doi: 10.1038/s41419-023-06391-x. DOI: https://doi.org/10.1038/s41419-023-06391-x

Sordo-Bahamonde C, Lorenzo-Herrero S, González-Rodríguez AP, Payer ÁR, González-García E, López-Soto A, et al. LAG-3 Blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers (Basel). 2021;13(9):2112. doi: 10.3390/cancers13092112. DOI: https://doi.org/10.3390/cancers13092112

Lindsted T, Gad M, Grandal MV, Frölich C, Bhatia VK, Gjetting T, et al. Preclinical characterization of Sym023 a human anti-TIM3 antibody with a novel mechanism of action. Cancer Res. 2018;78(13 Suppl):Abstract nr 5629. DOI: https://doi.org/10.1158/1538-7445.AM2018-5629

Rousseau A, Parisi C, Barlesi F. Anti-TIGIT therapies for solid tumors: a systematic review. ESMO Open. 2023;8(2):101184. doi: 10.1016/j.esmoop.2023.101184. DOI: https://doi.org/10.1016/j.esmoop.2023.101184

Thisted T, Smith FD, Mukherjee A, Kleschenko Y, Feng F, Jiang ZG, et al. VISTA checkpoint inhibition by pH-selective antibody SNS-101 with optimized safety and pharmacokinetic profiles enhances PD-1 response. Nat Commun. 2024;15(1):2917. doi: 10.1038/s41467-024-47256-x. DOI: https://doi.org/10.1038/s41467-024-47256-x

Zhao L, Guo Y, Guo Y, Ji X, Fan D, Chen C, et al. Effect and mechanism of circRNAs in tumor angiogenesis and clinical application. Int J Cancer. 2022;150(8):1223-1232. doi: 10.1002/ijc.33863. DOI: https://doi.org/10.1002/ijc.33863

Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021;6(1):153. doi: 10.1038/s41392-021-00544-0. DOI: https://doi.org/10.1038/s41392-021-00544-0

Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci. 2019;9:98. doi: 10.1186/s13578-019-0362-3. DOI: https://doi.org/10.1186/s13578-019-0362-3

Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021;101(1):147-176. doi: 10.1152/physrev.00048.2019. DOI: https://doi.org/10.1152/physrev.00048.2019

Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD. Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine. 2011;55(1):90-97. doi: 10.1016/j.cyto.2011.03.024. DOI: https://doi.org/10.1016/j.cyto.2011.03.024

Xia Q, Zhang FF, Geng F, Liu CL, Xu P, Lu ZZ, et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein α by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer Immunol Immunother. 2016;65(5):613-24. doi: 10.1007/s00262-016-1827-4. DOI: https://doi.org/10.1007/s00262-016-1827-4

Kim DJ, Dunleavey JM, Xiao L, Ollila DW, Troester MA, Otey CA, et al. Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. Br J Cancer. 2018;118(10):1359-1368. doi: 10.1038/s41416-018-0072-3. DOI: https://doi.org/10.1038/s41416-018-0072-3

Zhu Z, Zhu X, Yang S, Guo Z, Li K, Ren C, et al. Yin-yang effect of tumour cells in breast cancer: from mechanism of crosstalk between tumour-associated macrophages and cancer-associated adipocytes. Am J Cancer Res. 2020;10(2):383-392.

Duong MN, Geneste A, Fallone F, Li X, Dumontet C, Muller C. The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget. 2017;8(34):57622-57641. doi: 10.18632/oncotarget.18038. DOI: https://doi.org/10.18632/oncotarget.18038

Tebbe C, Chhina J, Dar SA, Sarigiannis K, Giri S, Munkarah AR, et al. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget. 2014;5(13):4746-4764. doi: 10.18632/oncotarget.2012. DOI: https://doi.org/10.18632/oncotarget.2012

Teufelsbauer M, Rath B, Plangger A, Staud C, Nanobashvili J, Huk I, et al. Effects of metformin on adipose-derived stromal cell (ADSC) - Breast cancer cell lines interaction. Life Sci. 2020;261:118371. doi: 10.1016/j.lfs.2020.118371. DOI: https://doi.org/10.1016/j.lfs.2020.118371

Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, et al. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr. 2024 Feb;43(2):332-345. doi: 10.1016/j.clnu.2023.12.005. DOI: https://doi.org/10.1016/j.clnu.2023.12.005

Hsu JY, Wakelee HA. Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs. 2009;23(5):289-304. doi: 10.2165/11317600-000000000-00000. DOI: https://doi.org/10.2165/11317600-000000000-00000

Chen M, Xiang R, Wen Y, Xu G, Wang C, Luo S, et al. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep. 2015;5:14421. doi: 10.1038/srep14421. DOI: https://doi.org/10.1038/srep14421

Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109(41):16618-16623. doi: 10.1073/pnas.1117610109. DOI: https://doi.org/10.1073/pnas.1117610109

Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci Transl Med. 2018;10(422):eaao0475. doi: 10.1126/scitranslmed.aao0475. DOI: https://doi.org/10.1126/scitranslmed.aao0475

Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909-2914. doi: 10.1073/pnas.1018892108. DOI: https://doi.org/10.1073/pnas.1018892108

Zhao Y, Cao J, Melamed A, Worley M, Gockley A, Jones D, et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2019;116(6):2210-2219. doi: 10.1073/pnas.1818357116. DOI: https://doi.org/10.1073/pnas.1818357116

Dolor A, Szoka FC. Digesting a path forward: The utility of collagenase tumor treatment for improved drug delivery. Mol Pharm. 2018;15(6):2069-2083. doi: 10.1021/acs.molpharmaceut.8b00319. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00319

Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871-282. doi: 10.1007/s13277-013-1511-7. DOI: https://doi.org/10.1007/s13277-013-1511-7

Chen Y, Di C, Zhang X, Wang J, Wang F, Yan JF, et al. Transforming growth factor β signaling pathway: A promising therapeutic target for cancer. J Cell Physiol. 2020;235(3):1903-1914. doi: 10.1002/jcp.29108. DOI: https://doi.org/10.1002/jcp.29108

Wan YY, Flavell RA. 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev. 2007;220:199-213. doi: 10.1111/j.1600-065X.2007.00565.x. DOI: https://doi.org/10.1111/j.1600-065X.2007.00565.x

Matsuyama S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K, et al. SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Res. 2003;63(22):7791-7798. PMID: 14633705.

DaCosta Byfield S, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65(3):744-752. doi: 10.1124/mol.65.3.744. DOI: https://doi.org/10.1124/mol.65.3.744

Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ et al. SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther. 2004 Jun;3(6):737-45. PMID: 15210860. DOI: https://doi.org/10.1158/1535-7163.737.3.6

Imanishi T, Hano T, Nishio I. Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res. 2004;27(2):101-108. doi: 10.1291/hypres.27.101. DOI: https://doi.org/10.1291/hypres.27.101

Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun. 2002;294(2):441-447. doi: 10.1016/S0006-291X(02)00496-5. DOI: https://doi.org/10.1016/S0006-291X(02)00496-5

Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, Sugaya T, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest. 2003;112(1):67-75. doi: 10.1172/JCI16645. DOI: https://doi.org/10.1172/JCI200316645

Lokman NA, Price ZK, Hawkins EK, Macpherson AM, Oehler MK, Ricciardelli C. 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer. Cancers (Basel). 2019;11(8):1187. doi: 10.3390/cancers11081187. DOI: https://doi.org/10.3390/cancers11081187

Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD. Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov. 2011;1(4):291-296. doi: 10.1158/2159-8290.CD-11-0136. DOI: https://doi.org/10.1158/2159-8290.CD-11-0136

Lo KM, Lan Y, Lauder S, Zhang J, Brunkhorst B, Qin G, et al. huBC1-IL12, an immunocytokine which targets EDB-containing oncofetal fibronectin in tumors and tumor vasculature, shows potent anti-tumor activity in human tumor models. Cancer Immunol Immunother. 2007;56(4):447-457. doi: 10.1007/s00262-006-0203-1. DOI: https://doi.org/10.1007/s00262-006-0203-1

Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev. 2018;129:37-53. doi: 10.1016/j.addr.2018.01.020. DOI: https://doi.org/10.1016/j.addr.2018.01.020

Miao L, Zhu S, Wang Y, Li Y, Ding J, Dai J, et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung cancer and promotes cell invasion via epithelial-to-mesenchymal transition. Med Oncol. 2013;30(3):626. doi: 10.1007/s12032-013-0626-4. DOI: https://doi.org/10.1007/s12032-013-0626-4

Huo Y, Yang M, Liu W, Yang J, Fu X, Liu D,. et al. High expression of DDR1 is associated with the poor prognosis in Chinese patients with pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 2015;34(1):88. doi: 10.1186/s13046-015-0202-1. DOI: https://doi.org/10.1186/s13046-015-0202-1

Aguilera KY, Huang H, Du W, Hagopian MM, Wang Z, Hinz S, et al. Inhibition of discoidin domain receptor 1 reduces collagen-mediated tumorigenicity in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2017;16(11):2473-2485. doi: 10.1158/1535-7163.MCT-16-0834. DOI: https://doi.org/10.1158/1535-7163.MCT-16-0834

Downloads

Published

2024-10-18

How to Cite

Al-Janabi, I. I. (2024). The Diverse Roles of the Tumour Microenvironment in Carcinogenesis. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 7(2), 26–37. https://doi.org/10.54133/ajms.v7i2.1464

Issue

Section

Review article

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.