Implementation of Eruca sativa Extract for the Preparation of Nano-Selenium Particles

Authors

  • Basman Shareef Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Iraq https://orcid.org/0009-0006-5314-9628
  • Huda Ibrahim Al Qadhi Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Iraq
  • Shayma'a Jamal Ahmed Department of Anatomy, College of Medicine, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0002-8693-3260
  • Mohammed Amran Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan 62001, Iraq. https://orcid.org/0000-0003-4150-7863
  • Zaid Osama Ibrahim Department of Pharmacy, Ashur University College, Baghdad, Iraq https://orcid.org/0000-0002-9290-0000

DOI:

https://doi.org/10.54133/ajms.v5i.141

Keywords:

Eruca Sativa, Nano-Selenium, UV-Vis spectra, FT-IR, Dynamic light scattering, Scanning electron microscopy

Abstract

Background: Nanoparticles can act as a carrier platform to ferry drugs to their target site of action to improve their activity and reduce the toxicity of some compounds, such as selenium, which acts as a cofactor for a variety of enzymes involved in oxido-reductive activities. Objective: This study suggested the implementation of Eruca sativa as a reducing agent to formulate selenium nanoparticles (SeNPs). Method: First, a 1% Eruca sativa extract solution will be dropped on 10 mM sodium selenite to produce a nanoselenium solution and characterize its physicochemical properties. Results: The prepared nano-selenium is monodispersed with a small particle size (39.4 nm), as confirmed by different characterization techniques. Conclusion: A 1% Eruca sativa extract solution has a powerful reducing effect that can be used in nanoselenium creation.

Downloads

Download data is not yet available.

References

Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, et al. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials (Basel). 2022;12(24):4494. doi: 10.3390/nano12244494. DOI: https://doi.org/10.3390/nano12244494

Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO. Green synthesis of metallic nanoparticles using some selected medicinal plants from Southern Africa and their biological applications. Plants (Basel). 2021;10(9):1929. doi: 10.3390/plants10091929. DOI: https://doi.org/10.3390/plants10091929

Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, et al. Nanoparticles: Taking a unique position in medicine. Nanomaterials (Basel). 2023;13(3):574. doi: 10.3390/nano13030574. DOI: https://doi.org/10.3390/nano13030574

Alsalman ARS, Almashhedy LA, Hadwan MH. Effect of oral zinc supplementation on the thiol oxido-reductive index and thiol-related enzymes in seminal plasma and spermatozoa of Iraqi asthenospermic patients. Biol Trace Elem Res. 2018;184(2):340-349. doi: 10.1007/s12011-017-1215-8. DOI: https://doi.org/10.1007/s12011-017-1215-8

Landis-Piwowar KR, Iyer NR. Cancer chemoprevention: current state of the art. Cancer Growth Metastasis. 2014;7:19-25. doi: 10.4137/CGM.S11288. DOI: https://doi.org/10.4137/CGM.S11288

Ramamurthy Ch, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 2013;36(8):1131-9. doi: 10.1007/s00449-012-0867-1. DOI: https://doi.org/10.1007/s00449-012-0867-1

Laslo V, Pinzaru SC, Zaguła G, Kluz M, Vicas SI, Cavalu S. Synergic effect of selenium nanoparticles and lactic acid bacteria in reduction cadmium toxicity. J Mol Struct. 2022;1247:131325. doi: 10.1016/j.molstruc.2021.131325. DOI: https://doi.org/10.1016/j.molstruc.2021.131325

Ghotekar S, Basnet P, Lin K-YA, Rahdar A, Larios AP, Gandhi V, et al. Green synthesis of CeVO4 nanoparticles using Azadirechta indica leaves extract and their promising applications as an antioxidant and anticancer agent. J Sol-Gel Sci Technol. 2023;106(3):726-736. doi: 10.1007/s10971-023-06105-x. DOI: https://doi.org/10.1007/s10971-023-06105-x

Mohammadinejad R, Shavandi A, Raie DS, Sangeetha J, Soleimani M, Hajibehzad SS, et al. Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21(8):1845-1865. doi: 10.1039/C9GC00335E. DOI: https://doi.org/10.1039/C9GC00335E

Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. Chemosphere. 2022;288(Pt 2):132527. doi: 10.1016/j.chemosphere.2021.132527. DOI: https://doi.org/10.1016/j.chemosphere.2021.132527

Garg G, Sharma V. Eruca sativa (L.): Botanical description, crop improvement, and medicinal properties. J Herbs Spices Med Plant. 2014;20(2):171-182. doi: 10.1080/10496475.2013.848254. DOI: https://doi.org/10.1080/10496475.2013.848254

Villatoro-Pulido M, Priego-Capote F, Álvarez-Sánchez B, Saha S, Philo M, Obregón-Cano S, De Haro-Bailón A, et al. An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J Sci Food Agric. 2013;93(15):3809-3819. doi: 10.1002/jsfa.6286. DOI: https://doi.org/10.1002/jsfa.6286

Jaafar NS, Jaafar IS. Eruca sativa Linn.: Pharmacognostical and pharmacological properties and pharmaceutical preparations. Asian J Pharm Clin Res. 2019;12(3):39-45. doi: 10.22159/ajpcr.2019.v12i3.30893. DOI: https://doi.org/10.22159/ajpcr.2019.v12i3.30893

Nail T, Ali M, Salim E. Phytochemical studies on Sudanese rocket (Eruca sativa) seeds and oil constituents. Am J Phytomed Clin Ther. 2017;5(1):1-5. doi:10.21767/2321-2748.100315.

Fechner J, Kaufmann M, Herz C, Eisenschmidt D, Lamy E, Kroh LW, et al. The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: Elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Food Chem. 2018;261:57-65. doi: 10.1016/j.foodchem.2018.04.023. DOI: https://doi.org/10.1016/j.foodchem.2018.04.023

Eldalawy R, Al-Ani WM, Kareem WA. Phenotypic, anatomical and phytochemical investigation of Iraqi Silybum marianum. J Phys Conf Ser. 2021;1879:022029. doi: 10.1088/1742-6596/1879/2/022029. DOI: https://doi.org/10.1088/1742-6596/1879/2/022029

Ibraheem ZO, Satar M, Abdullah NA, Rathore H, Tan YC, Uldin F, et al. Antioxidant and cardio protective effect of palm oil leaves extract (standardized ethanolic fraction) in rats' model of saturated fats induced metabolic disorders. Pak J Pharm Sci. 2014;27(1):1-9.

Nhon Hoang TN, Phan TT, Lien Phan TK, Van Nguyen NH, Dao Dong TA, Anh Le TH. Phytochemical screening, extraction, and determination of the bioactivities of the extract-enriched polyphenols and saponins from Musa balbisiana fruit. J Food Process Preserv. 2023;2023:2581641. doi: 10.1155/2023/2581641. DOI: https://doi.org/10.1155/2023/2581641

Pyrzynska, K., Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J Nanostruct Chem. 2022;12:467-480. doi: 10.1007/s40097-021-00435-4. DOI: https://doi.org/10.1007/s40097-021-00435-4

Shahabadi N, Zendehcheshm S, Khademi F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol Rep (Amst). 2021;30:e00615. doi: 10.1016/j.btre.2021.e00615. DOI: https://doi.org/10.1016/j.btre.2021.e00615

Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409-427. doi: 10.1007/s12551-016-0218-6. DOI: https://doi.org/10.1007/s12551-016-0218-6

Gunti L, Dass RS, Kalagatur NK. Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Front Microbiol. 2019;10:931. doi: 10.3389/fmicb.2019.00931. DOI: https://doi.org/10.3389/fmicb.2019.00931

Magagula TM. Synthesis and Evaluation of Isoflavonoids Capped Platinum Nanoparticles as Potential Anticancer Agents. Dissertation submitted to University of Johannesburg (South Africa); ProQuest Dissertations Publishing, 2021. 29237356.

Ul-Hamid A. A beginners' guide to scanning electron microscopy: Springer; 2018. doi: 10.1007/978-3-319-98482-7. DOI: https://doi.org/10.1007/978-3-319-98482-7

Tummala SK, Bobba PB, Satyanarayana K. SEM & EDAX analysis of super capacitor. Adv Material Process Technol. 2022;8(Supl. 4):2398-2409. doi: 10.1080/2374068X.2022.2040175. DOI: https://doi.org/10.1080/2374068X.2022.2040175

Isra D. Physicochemical Characterization of Nanobiocomposites. In: Magdy MME, Selcan K, (Eds.), Biocomposites. Rijeka: IntechOpen; 2022. p. Ch. 2. doi: 10.5772/intechopen.108818. DOI: https://doi.org/10.5772/intechopen.108818

Petit T, Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond Relat Mater. 2018;89:52-66. doi: 10.1016/j.diamond.2018.08.005. DOI: https://doi.org/10.1016/j.diamond.2018.08.005

El-Saadony MT, Saad AM, Najjar AA, Alzahrani SO, Alkhatib FM, Shafi ME, et al. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J Biol Sci. 2021;28(8):4461-4471. doi: 10.1016/j.sjbs.2021.04.043. DOI: https://doi.org/10.1016/j.sjbs.2021.04.043

Ibraheem ZO, Sattar MA, Abdullah NA, Hassan R, Johns EJ. Toxicity, phytochemical content and antioxidant activity assessment studies for standardized ethanolic fraction of palm oil leaf extract. Pharmacogn Commun. 2012;2:21-30. doi: 10.5530/pc.2012.1.5. DOI: https://doi.org/10.5530/pc.2012.1.5

Abdul-jabbar SR, (Ed.), Polyphenol and flavonoid contents and antioxidant activity in freshly consumed rocket (Eruca sativa). 2018 IOP Conf. Ser. Mater Sci Eng. 2018;454:012158. doi: 10.1088/1757-899X/454/1/012158. DOI: https://doi.org/10.1088/1757-899X/454/1/012158

Issa NK, Abd-Aljabar RS. Phytochemical analysis, antioxidant (DNA Nicking Assay) and antibacterial activities of Morus nigra L. fruits secondary metabolites. Sci J Univ Zakho. 2017;5(2):198-204. doi: 10.25271/2017.5.2.368. DOI: https://doi.org/10.25271/2017.5.2.368

Jay V, Shafkat R. Synthesis of selenium nanoparticles using Allium sativum extract and analysis of their antimicrobial property against gram positive bacteria. Pharma Innovat J. 2018;7(9):262-266.

Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep. 2021;11(1):1032. doi: 10.1038/s41598-020-80327-9. DOI: https://doi.org/10.1038/s41598-020-80327-9

Anu K, Singaravelu G, Murugan K, Benelli G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on vero cells. J Clust Sci. 2017;28:551-563. doi: 10.1007/s10876-016-1123-7. DOI: https://doi.org/10.1007/s10876-016-1123-7

Alagesan V, Venugopal S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoSci. 2019;9:105-116. doi: 10.1007/s12668-018-0566-8. DOI: https://doi.org/10.1007/s12668-018-0566-8

Bibi I, Nazar N, Ata S, Sultan M, Ali A, Abbas A, et al. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J Mater Res Technol. 2019;8(6):6115-6124. doi: 10.1016/j.jmrt.2019.10.006. DOI: https://doi.org/10.1016/j.jmrt.2019.10.006

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057. DOI: https://doi.org/10.3390/pharmaceutics10020057

Skandalis N, Dimopoulou A, Georgopoulou A, Gallios N, Papadopoulos D, Tsipas D, et al. The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials (Basel). 2017;7(7):178. doi: 10.3390/nano7070178. DOI: https://doi.org/10.3390/nano7070178

Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2015;134:310-315. doi: 10.1016/j.saa.2014.06.046. DOI: https://doi.org/10.1016/j.saa.2014.06.046

Fardsadegh B, Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of them in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synth. 2019;8(1):399-407. doi: 10.1515/gps-2019-0007. DOI: https://doi.org/10.1515/gps-2019-0007

Keyata EO, Tola YB, Bultosa G, Forsido SF. Phytochemical contents, antioxidant activity and functional properties of Raphanus sativus L, Eruca sativa L. and Hibiscus sabdariffa L. growing in Ethiopia. Heliyon. 2021;7(1):e05939. doi: 10.1016/j.heliyon.2021. DOI: https://doi.org/10.1016/j.heliyon.2021.e05939

Kokila K, Elavarasan N, Sujatha V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J Chem. 2017;41(15):7481-90. doi: 10.1039/C7NJ01124E. DOI: https://doi.org/10.1039/C7NJ01124E

Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, et al. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology. 2007;18(40):405102. doi: 10.1088/0957-4484/18/40/405102. DOI: https://doi.org/10.1088/0957-4484/18/40/405102

Ahmad MS, Khalid M, Shaheen MA, Tahir MN, Khan MU, Braga AAC, et al. Synthesis and XRD, FT-IR vibrational, UV–vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis. J Physics Chem Solids. 2018;115:265-276. doi: 10.1016/j.jpcs.2017.12.054. DOI: https://doi.org/10.1016/j.jpcs.2017.12.054

Joshi SM, De Britto S, Jogaiah S, Ito SI. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules. 2019;9(9):419. doi: 10.3390/biom9090419. DOI: https://doi.org/10.3390/biom9090419

Ramírez-Hernández A, Aguilar-Flores C, Aparicio-Saguilán A. Fingerprint analysis of FTIR spectra of polymers containing vinyl acetate. Dyna. 2019;86(209):198-205. doi: 10.15446/dyna.v86n209.77513. DOI: https://doi.org/10.15446/dyna.v86n209.77513

Ullah A,Yin X, Wang F, Xu B, Mirani ZA, Xu B, et al. Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules. 2021;26(18):5559. doi: 10.3390/molecule. DOI: https://doi.org/10.3390/molecules26185559

Downloads

Published

2023-07-11

How to Cite

Shareef, B., Al Qadhi , H. I., Shayma'a Jamal Ahmed, Amran, M., & Ibrahim, Z. O. (2023). Implementation of Eruca sativa Extract for the Preparation of Nano-Selenium Particles. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 5, 26–33. https://doi.org/10.54133/ajms.v5i.141

Issue

Section

Original article

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.