Preparation and Characterization of Bilastine Solid Self-Nanoemulsion using Liquisolid Technique
DOI:
https://doi.org/10.54133/ajms.v5i.160Keywords:
Bilastine, SNEDDS, Dissolution efficiency, Liquisolid powderAbstract
Background: Supersaturable self-nanoemulsion (S-SNE) is an approach for dealing with low oral bioavailability problems. Bilastine (BL) is a selective H1-antihistamine with a bioavailability of 59%. Objective: To use a liquisolid technique to transform liquid BL S-SNE into powder so that both the S-SNE and liquisolid procedures could be used. Methods: Oleic acid, tween 60, transcutol, and soluplus were used to make the liquid BL-loaded S-SNE that was adsorbed onto the Avicel PH101 and Aerosil 200 admixtures. In vitro dissolution and powder flow characteristics were tested. SEM, DSC, X-ray diffraction, FT-IR analysis, and the average droplet size after dispersion in 0.1N HCl were also utilized to define the best formula's solid state. Results: The best liquid-solid composition, SS-F2, is composed of oleic acid, tween 60, transcutol, soluplus, Avicel 101, and Aerosil 200, with a liquid SNE to Avicel 101 ratio of 1.5:1 and an Avicel 200 to Aerosil 200 ratio of 10:1. SS-F2 displayed good flowability and a significant improvement in drug dissolution, with 100% of the medication released after 60 min compared to 62.27% of the marketed BL tablets. According to the solid-state investigation of formula (SS-F2), BL was shown to be in a solvated state in the solidified nanosystem, with no interactions with the excipient used. It also formed a nanoemulsion with mean droplet sizes of 77.57 nm and a PDI of 0.4178, which was similar to liquid S-SNE. Conclusion: The liquisolid technique is a potential method for solidifying a liquid self-emulsifying system while preserving self-nanoemulsion characteristics and increasing dissolving rate.
Downloads
References
Hussein LS, Al-Khedairy EB. Solubility and dissolution enhancement of ebastine by surface solid dispersion technique. Iraqi J Pharm Sci. 2021;30(1):122-132. doi: 10.31351/vol30iss1pp122-132. DOI: https://doi.org/10.31351/vol30iss1pp122-132
Sabri LA, Hussein AA. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: preparation and in-vitro/ex-vivo evaluation. Iraqi J Pharm Sci. 2020;29(1):216-225. doi: 10.31351/vol29iss1pp216-225. DOI: https://doi.org/10.31351/vol29iss1pp216-225
Mahmood HS, Alaayedi M, Ghareeb MM, Ali MM. The enhancement solubility of oral flurbiprofen by using nanoemelsion as drug delivery system. Int J Pharm Res. 2020;12:1612-1619. doi: 10.31838/ijpr/2020.SP1.248. DOI: https://doi.org/10.31838/ijpr/2020.SP1.248
Thomas N, Holm R, Müllertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25-32. doi: 10.1016/j.jconrel.2012.02.027. DOI: https://doi.org/10.1016/j.jconrel.2012.02.027
Schmied FP, Bernhardt A, Baudron V, Beine B, Klein S. Development and characterization of celecoxib solid self-nanoemulsifying drug delivery systems (S-SNEDDS) prepared using novel cellulose-based microparticles as adsorptive carriers. AAPS PharmSciTech. 2022;23(6):213. doi: 10.1208/s12249-022-02347-0. DOI: https://doi.org/10.1208/s12249-022-02347-0
Hussein Z, Rajab NA. Formulation and characterization of bromocriptine mesylate as liquid self-nano emulsifying drug delivery system. Iraqi J Pharm Sci. 2018:93-101. doi: 10.31351/vol27iss2pp93-101. DOI: https://doi.org/10.31351/vol27iss2pp93-101
Vithani K, Hawley A, Jannin V, Pouton C, Boyd BJ. Inclusion of digestible surfactants in solid SMEDDS formulation removes lag time and influences the formation of structured particles during digestion. AAPS J. 2017;19:754-764. doi: 10.1208/s12248-016-0036-6. DOI: https://doi.org/10.1208/s12248-016-0036-6
Yetukuri K, Sudheer P. Approaches to development of solid-self micron emulsifying drug delivery system: Formulation techniques and dosage forms: A review. Int J Pharm Sci Res. 2012;3(10): 3550-3558. doi: 10.13040/IJPSR.0975-8232.3(10).3550-58. DOI: https://doi.org/10.13040/IJPSR.0975-8232.3(10).3550-58
Dening TJ, Rao S, Thomas N, Prestidge CA. Novel nanostructured solid materials for modulating oral drug delivery from solid-state lipid-based drug delivery systems. The AAPS J. 2016;18:23-40. doi: 10.1208/s12248-015-9824-7. DOI: https://doi.org/10.1208/s12248-015-9824-7
Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, et al. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: in-vitro, in-silico, and in-vivo characterization. J Pharm Sci. 2021;110(1):280-291. doi: 10.1016/j.xphs.2020.10.020. Epub 2020 Oct 15. DOI: https://doi.org/10.1016/j.xphs.2020.10.020
Alwadei M, Kazi M, Alanazi FK. Novel oral dosage regimen based on self-nanoemulsifying drug delivery systems for codelivery of phytochemicals–curcumin and thymoquinone. Saudi Pharm J. 2019;27(6):866-876. doi: 10.1016/j.jsps.2019.05.008. DOI: https://doi.org/10.1016/j.jsps.2019.05.008
Kuna P, Jutel M, Pulka G, Tokarski S, Arranz P, Hernández G, et al. Safety and tolerability of bilastine 0.6% ophthalmic solution: An 8-weeks phase III study. Clin Ophthalmol. 2023:735-746. doi: 10.2147/OPTH.S398168. DOI: https://doi.org/10.2147/OPTH.S398168
Dolly SA, Talele AN, Prajapati AP, Narkhede SB. Formulation and evaluation of sublinqual drug delivery system of bilastine for allergic rhinoconjuctivitis. IAJPS. 2021;8(4):166-181.
Katla VM, Veerabrahma K. Cationic solid self-micro emulsifying drug delivery system (SSMED) of losartan: Formulation development, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2016;35:190-199. doi: 10.1016/j.jddst.2016.04.011. DOI: https://doi.org/10.1016/j.jddst.2016.04.011
Khalid KW, Abd Alhammid SN. Preparation and characterization of ticagrelor solid self nano-emulsion. J Pharm Negative Results. 2022;13(3):284. doi: 10.47750/pnr.2022.13.03.045. DOI: https://doi.org/10.47750/pnr.2022.13.03.045
Nair AB, Singh B, Shah J, Jacob S, Aldhubiab B, Sreeharsha N, et al. Formulation and evaluation of self-nanoemulsifying drug delivery system derived tablet containing sertraline. Pharmaceutics. 2022;14(2):336. doi: 10.3390/pharmaceutics14020336. DOI: https://doi.org/10.3390/pharmaceutics14020336
Pharmacopeia, U. United States Pharmacopeia and National Formulary (USP 30 NF 25); US Pharmacopeia: Rockville, MD, USA, 2006.
The United States Pharmacopoeia (USP) 30 N. NF 25. The United States Pharmacopeial Convention Inc. USA: Rockville; 2006. P.1191- 3, 2110.
Pravala K, Nagabandi VK, Divya A. Enhancement of bioavailability of hydrochloride through liquisolid formulations: In vitro and in vivo evaluation. Der Pharmacia Lett. 2013;5(6):151-163.
Ghareeb MM, Neamah AJ. Formulation and characterization of nimodipine nanoemulsion as ampoule for oral route. Int J Pharm Sci Res. 2017;8(2):591. doi: 10.13040/IJPSR.0975-8232.8(2).591-02. DOI: https://doi.org/10.13040/IJPSR.0975-8232.8(2).591-02
Rathore C, Hemrajani C, Sharma AK, Gupta PK, Jha NK, Aljabali AAA, et al. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res. 2023;13(1):292-307. doi: 10.1007/s13346-022-01193-8. DOI: https://doi.org/10.1007/s13346-022-01193-8
Rajesh SY, Singh SK, Pandey NK, Sharma P, Bawa P, Kumar B, et al. Impact of various solid carriers and spray drying on pre/post compression properties of solid SNEDDS loaded with glimepiride: in vitro-ex vivo evaluation and cytotoxicity assessment. Drug Dev Ind Pharm. 2018;44(7):1056-1069. doi: 10.1080/03639045.2018.1431656. DOI: https://doi.org/10.1080/03639045.2018.1431656
Dahash RA, Rajab NA. Formulation and investigation of lacidipine as a nanoemulsions. Iraqi J Pharm Sci. 2020;29(1):41-54. doi: 10.31351/vol29iss1pp41-54. DOI: https://doi.org/10.31351/vol29iss1pp41-54
Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech. 2009;10(1):183-192. doi: 10.1208/s12249-009-9192-7. DOI: https://doi.org/10.1208/s12249-009-9192-7
Abdelbary G, Prinderre P, Eouani C, Joachim J, Reynier JP, Piccerelle P. The preparation of orally disintegrating tablets using a hydrophilic waxy binder. Int J Pharm. 2004;278(2):423-433. doi: 10.1016/j.ijpharm.2004.03.023. DOI: https://doi.org/10.1016/j.ijpharm.2004.03.023
Sharma P, Singh SK, Pandey NK, Rajesh SY, Bawa P, Kumar B, et al. Impact of solid carriers and spray drying on pre/post-compression properties, dissolution rate and bioavailability of solid self-nanoemulsifying drug delivery system loaded with simvastatin. Powder Technology. 2018;338:836-846. doi: 10.1016/j.powtec.2018.07.092. DOI: https://doi.org/10.1016/j.powtec.2018.07.092
Jabbar AS, Hussein AA. Formulation and evaluation of piroxicam liquisolid compacts. Int J Pharmacy Pharm Sci. 2013;5(1):132-141.
USP 32 NF 27: United States Pharmacopeia (and) National Formulary. Supplement 2. United States Pharmacopeial Convention; 2009.
Rana RH, Rana MS, Tasnim S, Haque MR, Kabir S, Amran MS, et al. Characterization and tableting properties of microcrystalline cellulose derived from waste paper via hydrothermal method. J Appl Pharm Sci. 2022;12(6):140-147. doi: 10.7324/JAPS.2022.120613. DOI: https://doi.org/10.7324/JAPS.2022.120613
Chandna C, Mahashwari RK. Mixed solvency concept in reducing surfactant concentration of self-emulsifying drug delivery systems of candesartan cilexetil using D-optimal mixture design. Asian J Pharm. 2013;7:83-91. doi: 10.22377/ajp.v7i2.31. DOI: https://doi.org/10.4103/0973-8398.115960
Szlęk J, Khalid MH, Pacławski A, Czub N, Mendyk A. Puzzle out machine learning model-explaining disintegration process in ODTs. Pharmaceutics. 2022;14(4):859. doi: 10.3390/pharmaceutics14040859. DOI: https://doi.org/10.3390/pharmaceutics14040859
Wang J, Trinkle D, Derbin G, Martin K, Sharif S, Timmins P, et al. Moisture adsorption and desorption properties of colloidal silicon dioxide and its impact on layer adhesion of a bilayer tablet formulation. J Excipients Food Chem. 2016;5(1):21-31.
Albertini B, Passerini N, González-Rodríguez ML, Perissutti B, Rodriguez L. Effect of Aerosil® on the properties of lipid controlled release microparticles. J Control Release. 2004;100(2):233-246. doi: 10.1016/j.jconrel.2004.08.013. DOI: https://doi.org/10.1016/j.jconrel.2004.08.013
Rathi SJ, Chaudhari DB, Vaghela SS, Kamani KR. Physicochemical characterization and dissolution enhancement of bilastine by solid dispersion. Int J Pharm Sci Rev Res. 2021;69(1):194-200. doi: 10.47583/ijpsrr.2021.v69i01.028. DOI: https://doi.org/10.47583/ijpsrr.2021.v69i01.028
Del Río Pericacho JL, Puigjaner Vallet MC, Lopez RP, Yolanda Esther Arredondo Martinez YE. Crystalline forms of bilastine and preparation methods thereof. European Patent Application (EP 3 327 012 A1). 30.05.2018.
Azubuike CP, Okhamafe AO. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recycl Organic Waste Agriculture. 2012;1(1):67-73. doi: 10.1186/2251-7715-1-9. DOI: https://doi.org/10.1186/2251-7715-1-9
Sabri LA, Hussien AA. Formulation and in-vitro characterization of solidified nebivolol self-nanoemulsion using liquisolid technique. Syst Rev Pharm. 2020;11(3). doi: 10.5530/srp.2020.3.29.
Ali HH, Hussein AA. Oral solid self-nanoemulsifying drug delivery systems of candesartan citexetil: formulation, characterization and in vitro drug release studies. AAPS Open. 2017;3:1-7. Doi: 10.1186/s41120-017-0015-8. DOI: https://doi.org/10.1186/s41120-017-0015-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).