Formulation and Evaluation of Bilastine Thermosensitive Mucoadhesive Ophthalmic in situ Gel

Authors

DOI:

https://doi.org/10.54133/ajms.v7i1.1014

Keywords:

Bilastine, HPMC, In situ gel, Poloxamer, Thermosensitive

Abstract

Background: Bilastine is a non-sedating, second-generation antihistamine used to treat urticaria and allergic conjunctivitis. Objective: to formulate and test bilastine as a mucoadhesive ophthalmic in situ gel in order to extend its presence at site for longer time and help treat conjunctivitis and allergic rhinitis. Methods: We prepared formulations using different concentrations of poloxamers (Poloxamer 407 (P407) and Poloxamer 188 (P188)) in combination with hydroxypropyl methyl cellulose (HPMC). The prepared formulas were evaluated for their physicochemical properties, sol-gel transition temperature, viscosity, mucoadhesive strength, drug release, and kinetic modeling. Results: The prepared in situ gels were clear and transparent, having a pH ranging from 7.4 to 7.5 and a gelation temperature between 29.5 and 34.7 °C. Increasing the concentrations of P-407 and HPMC increased viscosity, gel strength, and mucoadhesion force, but caused a decrease in gelation temperature and drug release. Formula (F 14) containing P 407/P 188/HPMC as 19/4/0.75% w/v, respectively, exhibited favorable characteristics, including optimal gelation temperature (33°C), drug content (93%), gel strength (40 sec), mucoadhesive force (6125 dyne/cm2), and 91.4% in vitro drug release over 5 hours. Conclusions: The bilastine mucoadhesive in situ gel formulation is presented as a promising ophthalmic formulation for the treatment of allergic conjunctivitis.

 

Downloads

Download data is not yet available.

References

Rodrigues J, Kuruvilla ME, Vanijcharoenkarn K, Patel N, Hom MM, Wallace D V. The spectrum of allergic ocular diseases. Ann Allergy, Asthma Immunol. 2021;126(3):240–254. doi10.1: 016/j.anai.2020.11.016. DOI: https://doi.org/10.1016/j.anai.2020.11.016

Labib BA, Chigbu DI. Therapeutic Targets in Allergic Conjunctivitis. Pharmaceuticals. 2022;15(5):547. doi: 10.3390/ph15050547. DOI: https://doi.org/10.3390/ph15050547

Church MK, Tiongco-Recto M, Ridolo E, Novák Z. Bilastine: a lifetime companion for the treatment of allergies. Curr Med Res Opin. 2020;36(3):445–454. doi: 10.1080/03007995.2019.1681134. DOI: https://doi.org/10.1080/03007995.2019.1681134

Abbas IK, Abd AlHammid SN. Preparation and characterization of bilastine solid self-nanoemulsion using liquisolid technique. Al-Rafidain J Med Sci. 2023;5:78-85. doi: 10.54133/ajms.v5i.16. DOI: https://doi.org/10.54133/ajms.v5i.160

Gomes PJ, Ciolino JB, Arranz P, Hernández G, Fernández N. Efficacy of Once-Daily Ophthalmic Bilastine for the Treatment of Allergic Conjunctivitis: A Dose-Finding Study. J Investig Allergol Clin Immunol. 2023;33(4):271–280. doi: 10.18176/jiaci.0800. DOI: https://doi.org/10.18176/jiaci.0800

Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: Present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–624. doi: 10.1124/jpet.119.256933. DOI: https://doi.org/10.1124/jpet.119.256933

Agarwal P, Rupenthal ID. Non-aqueous formulations in topical ocular drug delivery – A paradigm shift? Adv Drug Deliv Rev. 2023;198:114867. doi: 10.1016/j.addr.2023.114867. DOI: https://doi.org/10.1016/j.addr.2023.114867

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1–15. doi: 10.1016/j.ajps.2018.04.008. DOI: https://doi.org/10.1016/j.ajps.2018.04.008

Deka M, Ahmed AB, Chakraborty J. Development, Evaluation and Characteristics of Ophthalmic in Situ Gel System: a Review. Int J Curr Pharm Res. 2019;11(4):47–53. doi: 10.22159/ijcpr.2019v11i4.34949. DOI: https://doi.org/10.22159/ijcpr.2019v11i4.34949

Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, et al. Thermo-sensitive polymers in medicine: A review. Eur Polym J. 2019;117:402–423. doi: 10.1016/j.eurpolymj.2019.05.024. DOI: https://doi.org/10.1016/j.eurpolymj.2019.05.024

Kurniawansyah IS, Rusdiana T, Sopyan I, Subarnas A, Wahab HA. Utilization of poloxamer as well as combinations with other polymers as base in ophthalmic in situ gel dosage form. Int J Drug Deliv Technol. 2020;10(1):101–105. doi: 10.25258/ijddt.10.1.28. DOI: https://doi.org/10.25258/ijddt.10.1.28

Krtalić I, Radošević S, Hafner A, Grassi M, Nenadić M, Cetina-Čižmek B, et al. D-Optimal design in the development of rheologically improved in situ forming ophthalmic gel. J Pharm Sci. 2018;107(6):1562–1571. doi: 10.1016/j.xphs.2018.01.019.

Dawood BY, Kassab HJ. Preparation and in vitro evaluation of naproxen as a pH sensitive ocular in situ gel. Int J Appl Pharm. 2019;11(2):37–44. doi: 10.22159/ijap.2019v11si2.31229. DOI: https://doi.org/10.22159/ijap.2019v11i2.31229

Kurniawansyah IS, Rusdiana T, Tsaniyah H, Ramoko H, Wahab HA, Subarnas A. In vitro drug release study of chloramphenicol in situ gel with bases mixture of poloxamer 407 and HPMC by optimization with factorial design. Int J Appl Pharm. 2021;13(special issue 4):116–123. doi: 10.22159/IJAP.2021.V13S4.43829. DOI: https://doi.org/10.22159/ijap.2021.v13s4.43829

Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm. 2011;411(1–2):128–135. doi: 10.1016/j.ijpharm.2011.03.054. DOI: https://doi.org/10.1016/j.ijpharm.2011.03.054

Yassir Al-Bazzaz F, Al-Kotaji M. Ophthalmic in-situ sustained gel of ciprofloxacin, preparation and evaluation study. Int J Appl Pharm. 2018;10(4):153–161. doi: 10.22159/ijap.2018v10i4.26885. DOI: https://doi.org/10.22159/ijap.2018v10i4.26885

Manigauha A, Sunita Yadav. Formulation and characterization of novel ophthalmic in situ gel of flucytosine for improved bioavailability. Pharm Biosci J. 2022;10(1):01–8. doi: 10.20510/10.20510/pbj/10/i1/1646. DOI: https://doi.org/10.20510/10.20510/pbj/10/i1/1646

Detroja K, Vekaria H. Advanced derivative spectroscopic method for estimation of montelukast and bilastine in their tablet dosage form. Int J Pharm Sci Drug Res. 2020;13(03):268–274. doi: 10.25004/ijpsdr.2021.130305. DOI: https://doi.org/10.25004/IJPSDR.2021.130305

Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: The rheological and gamma scintigraphic studies. J Control Release. 2002;83(1):65–74. doi: 10.1016/S0168-3659(02)00175-X. DOI: https://doi.org/10.1016/S0168-3659(02)00175-X

Bhalerao H, Koteshwara KB, Chandran S. Levofloxacin hemihydrate in situ gelling ophthalmic solution: formulation optimization and in vitro and in vivo evaluation. AAPS PharmSciTech. 2019;20(7):1–12. doi: 10.1208/s12249-019-1489-6. DOI: https://doi.org/10.1208/s12249-019-1489-6

Sadeq ZA, Sabri LA, Al-Kinani KK. Natural polymer Effect on gelation and rheology of ketotifen-loaded pH-sensitive in situ ocular gel (Carbapol). J Adv Pharm Educ Res. 2022;12(2):45–50. doi: 10.51847/zOf4TcFeKT. DOI: https://doi.org/10.51847/zOf4TcFeKT

Raheema DA, Kassab HJ. Preparation and in-vitro evaluation of secnidazole as periodontal in-situ gel for treatment of periodontal disease. Iraqi J Pharm Sci. 2022;31(2):50–61. doi: 10.31351/vol31iss2pp50-61. DOI: https://doi.org/10.31351/vol31iss2pp50-61

Obayes KK, Thomas LM. Development and characterization of hyaluronic acid incorporated thermosensitive nasal in situ gel of meclizine hydrochloride. Al-Rafidain J Med Sci. 2024;6(1):97-104. doi: 10.54133/ajms.v6i1.499. DOI: https://doi.org/10.54133/ajms.v6i1.499

Mansour M, Mansour S, Mortada ND, Abd ElHady SS. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels. Drug Dev Ind Pharm. 2008;34(7):744–752. doi: 10.1080/03639040801926030. DOI: https://doi.org/10.1080/03639040801926030

Thomas LM, Khasraghi AH, Saihood AH. Preparation and evaluation of lornoxicam in situ gelling liquid suppository. Drug Inven Today. 2018;10:1556–1563.

Alkholief M, Kalam MA, Almomen A, Alshememry A, Alshamsan A. Thermoresponsive sol-gel improves ocular bioavailability of Dipivefrin hydrochloride and potentially reduces the elevated intraocular pressure in vivo. Saudi Pharm. 2020;28(8):1019–1029. doi: 10.1016/j.jsps.2020.07.001. DOI: https://doi.org/10.1016/j.jsps.2020.07.001

Huang W, Zhang N, Hua H, Liu T, Tang Y, Fu L, et al. Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed Pharmacother. 2016;83:107–113. doi: 10.1016/j.biopha.2016.06.024. DOI: https://doi.org/10.1016/j.biopha.2016.06.024

Pittol V, Veras KS, Kaiser S, Danielli LJ, Fuentefria AM, Ortega GG. Poloxamer-enhanced solubility of griseofulvin and its related antifungal activity against Trichophyton spp. Braz J Pharm Sci. 2022;58:e19731. doi: 10.1590/s2175-97902022e19731. DOI: https://doi.org/10.1590/s2175-97902022e19731

Wu H, Liu Z, Peng J, Li L, Li N, Li J, et al. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm. 2011;410(1–2):31–40. doi: 10.1016/j.ijpharm.2011.03.007. DOI: https://doi.org/10.1016/j.ijpharm.2011.03.007

De Stefani C, Lodovichi J, Albonetti L, Salvatici MC, Quintela JC, Bilia AR, Bergonzi MC. Solubility and permeability enhancement of oleanolic acid by solid dispersion in poloxamers and γ-CD. Molecules. 2022;27(9):3042. doi: 10.3390/molecules27093042. DOI: https://doi.org/10.3390/molecules27093042

Gallarate M, Chirio D, Bussano R, Peira E, Battaglia L, Baratta F, et al. Development of O/W nanoemulsions for ophthalmic administration of timolol. Int J Pharm. 2013;440(2):126–134. doi: 10.1016/j.ijpharm.2012.10.015. DOI: https://doi.org/10.1016/j.ijpharm.2012.10.015

Krtalić I, Radošević S, Hafner A, Grassi M, Nenadić M, Cetina-Čižmek B, et al. D-optimal design in the development of rheologically improved in situ forming ophthalmic gel. J Pharm Sci. 2018;107(6):1562–1571. doi: 10.1016/j.xphs.2018.01.019. DOI: https://doi.org/10.1016/j.xphs.2018.01.019

Qian Y, Wang F, Li R, Zhang Q, Xu Q. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev Ind Pharm. 2010;36(11):1340–1347. doi: 10.3109/03639041003801893. DOI: https://doi.org/10.3109/03639041003801893

Alabdly AA, Kassab HJ. Formulation variables effect on gelation temperature of nefopam hydrochloride intranasal in situ gel. Iraqi J Pharm Sci. 2022;31(5):32–44. doi: 10.31351/vol31issSuppl.pp32-44. DOI: https://doi.org/10.31351/vol31issSuppl.pp32-44

M.A. Fathalla Z, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–134. doi: 10.1016/j.ejpb.2017.01.008. DOI: https://doi.org/10.1016/j.ejpb.2017.01.008

Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, et al. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci. 2022;179:106294. doi: 10.1016/j.ejps.2022.106294. DOI: https://doi.org/10.1016/j.ejps.2022.106294

Fadhel AY, Rajab NA. Tizanidine Intranasal Nanoemulsion In situ Gel: Formulation and In-Vivo Brain Study. J. Pharm. Negat. Results. 2022;13(2):582-591.

Shastri D, Prajapati S, Patel L. Thermoreversible mucoadhesive ophthalmic in situ hydrogel: Design and optimization using a combination of polymers. Acta Pharm. 2010;60(3):349–360. doi: 10.2478/v10007-010-0029-4. DOI: https://doi.org/10.2478/v10007-010-0029-4

Lakshmi P, Harini K. Design and optimization of thermo-reversible naal in situ gel of atomoxetine hydrochloride using Taguchi orthogonal array design. Dhaka Univ J Pharm Sci. 2019;18(2):183–193. doi: 10.3329/dujps.v18i2.43261. DOI: https://doi.org/10.3329/dujps.v18i2.43261

El-Feky YA, Fares AR, Zayed G, El-Telbany RFA, Ahmed KA, El-Telbany DFA. Repurposing of nifedipine loaded in situ ophthalmic gel as a novel approach for glaucoma treatment. Biomed Pharmacother. 2021;142(May):112008. doi: 10.1016/j.biopha.2021.112008. DOI: https://doi.org/10.1016/j.biopha.2021.112008

Naik JB, Pardeshi SR, Patil RP, Patil PB, Mujumdar A. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: An overview. Bionanoscience. 2020;10(3):564–582. doi: 10.1007/s12668-020-00752-y. DOI: https://doi.org/10.1007/s12668-020-00752-y

Shah P, Thakkar V, Anjana V, Christian J, Trivedi R, Patel K, et al. Exploring of Taguchi design in the optimization of brinzolamide and timolol maleate ophthalmic in-situ gel used in treatment of glaucoma. Curr Drug ther. 2019;15(5):524–542. doi: 10.2174/1574885514666190916151506. DOI: https://doi.org/10.2174/1574885514666190916151506

Bhandwalkar MJ, Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: Formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech. 2013;14(1):101–110. doi: 10.1208/s12249-012-9893-1. DOI: https://doi.org/10.1208/s12249-012-9893-1

Barse R, Kokare C, Tagalpallewar A. Influence of hydroxypropl-methylcellulose and poloxamer composite on developed ohthalmic in situ gel: Ex vivo and in vivo characterization. J Drug Deliv Sci Tech. 2016;33:66-74. doi: 10.1016/j.jddst.2016.03.011. DOI: https://doi.org/10.1016/j.jddst.2016.03.011

Downloads

Published

2024-07-02

How to Cite

Ibrahim, A. G., & Thomas, L. M. (2024). Formulation and Evaluation of Bilastine Thermosensitive Mucoadhesive Ophthalmic in situ Gel. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 7(1), 1–7. https://doi.org/10.54133/ajms.v7i1.1014

Issue

Section

Original article

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.