Nanospanlastic in situ Gel for Nose to Brain Delivery of Nimodipine: In vitro Optimization and in vivo Pharmacokinetic Study
DOI:
https://doi.org/10.54133/ajms.v8i1.1687Keywords:
In situ gel, Nimodipine, Pharmacokinetic study, Probe pull test, Spanlastic nanovesicleAbstract
Background: The FDA has approved the medication nimodipine (NMD) to treat vasospasm brought on by subarachnoid hemorrhage. The most popular way to administer NMD is intravenously, which can result in several adverse effects, including bradycardia, hypotension, arrhythmias, and inflammation at the administration site. Objective: To evaluate the effectiveness of nose-to-brain (NTB) delivery of NMD as spanlastic nanovesicles (SNV) in situ gel into the brain and compare it with IV infusion. Methods: The nanovesicle formulation by the ethanol injection method used Span 60 as a non-ionic surfactant and Tween 60 as an edge activator for enhanced permeability. The nanovesicle formulation is within the accepted range for nose-to-brain mixing with poloxamer 407 to in situ gel formulation by the cold method. Results: The result was observed in the optimized formula with a particle size of 73.18 nm, a PDI of 0.1646, and higher drug entrapment within the vesicles. The in situ gel with the optimized formula shows gelation temperature with nasal fluid temperature. The in vivo pharmacokinetic behavior of NTB in the optimized formula in blood and brain was contrasted with commercial NMD. In contrast to intravenous administration of the NMD, the results indicate that NTB of NMD in situ gel was able to deliver the same amount of NMD to brain tissue with lower drug levels in blood. Conclusions: The nose-to-brain approach for NMD-SNV may be able to deliver NMD systemically to the brain with less frequent dosing and fewer cardiac adverse effects.
Downloads
References
Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gijn J, et al. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke. 2005;36(12):2773-2780. doi: 10.1161/01.STR.0000190838.02954.e8. DOI: https://doi.org/10.1161/01.STR.0000190838.02954.e8
Song X, Jiang Y, Ren C, Sun X, Zhang Q, Gong T, et al. Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study. Int J Nanomed. 2012;7:3689-3699. doi: 10.2147/IJN.S33228. DOI: https://doi.org/10.2147/IJN.S33228
Scriabine A, van den Kerckhoff W. Pharmacology of nimodipine. A review. Ann N Y Acad Sci. 1988;522:698-706. doi: 10.1111/j.1749-6632.1988.tb33415.x. DOI: https://doi.org/10.1111/j.1749-6632.1988.tb33415.x
Toescu EC, Verkhratsky A. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell. 2007;6(3):267-273. doi: 10.1111/j.1474-9726.2007.00296.x. DOI: https://doi.org/10.1111/j.1474-9726.2007.00296.x
Soliman GM, Sharma R, Choi AO, Varshney SK, Winnik FM, Kakkar AK, et al. Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials. 2010;31(32):8382-8392. doi: 10.1016/j.biomaterials.2010.07.039. DOI: https://doi.org/10.1016/j.biomaterials.2010.07.039
Langley MS, Sorkin EM. Nimodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs. 1989;37(5):669-699. doi: 10.2165/00003495-198937050-00004. DOI: https://doi.org/10.2165/00003495-198937050-00004
Fu Q, Sun J, Zhang D, Li M, Wang Y, Ling G, et al. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;109:161-166. doi: 10.1016/j.colsurfb.2013.01.066. DOI: https://doi.org/10.1016/j.colsurfb.2013.01.066
Rashed HM, Shamma RN, Basalious EB. Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: in vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery. Drug Deliv. 2016;24(1):181-187. doi: 10.1080/10717544.2016.1236848. DOI: https://doi.org/10.1080/10717544.2016.1236848
Whii F. Intranasal delivery: Bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol. 2002;2(5):46–49.
Kapoor M, Cloyd JC, Siegel RA. A review of intranasal formulations for the treatment of seizure emergencies. J Control Release. 2016;237:147-159. doi: 10.1016/j.jconrel.2016.07.001. DOI: https://doi.org/10.1016/j.jconrel.2016.07.001
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):681-693. doi: 10.3109/10717544.2014.920431. DOI: https://doi.org/10.3109/10717544.2014.920431
Zhang QZ, Zha LS, Zhang Y, Jiang WM, Lu W, Shi ZQ, et al. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target. 2006;14(5):281-290. doi: 10.1080/10611860600721051. DOI: https://doi.org/10.1080/10611860600721051
Mohsen K, Azzazy HME, Allam NK, Basalious EB. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: In vitro optimization and in vivo pharmacokinetic study. Mater Sci Eng C Mater Biol Appl. 2020;116:111236. doi: 10.1016/j.msec.2020.111236. DOI: https://doi.org/10.1016/j.msec.2020.111236
Badria F, Mazyed E. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-Acetyl-11-Keto-β-Boswellic Acid): Statistical optimization, in vitro characterization, and ex vivo permeation study. Drug Des Dev Ther. 2020 Sep 15;14:3697-3721. doi: 10.2147/DDDT.S265167. DOI: https://doi.org/10.2147/DDDT.S265167
Al-Mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. 2017;522(1-2):157-164. doi: 10.1016/j.ijpharm.2017.03.005. DOI: https://doi.org/10.1016/j.ijpharm.2017.03.005
Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1-2):291-298. doi: 10.1016/j.ijpharm.2012.07.003. DOI: https://doi.org/10.1016/j.ijpharm.2012.07.003
Pandey M, Choudhury H, Gorain B, Tiong SQ, Wong GYS, Chan KX, et al. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting. Gels. 2021 Nov 16;7(4):218. doi: 10.3390/gels7040218. DOI: https://doi.org/10.3390/gels7040218
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based liposomal nanocarriers for drug delivery in lung cancer therapy: Recent progress and future outlooks. Curr Pharm Des. 2024;30(36):2850-2881. doi: 10.2174/0113816128304923240704113319. DOI: https://doi.org/10.2174/0113816128304923240704113319
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, et al. Nanoparticles containing oxaliplatin and the treatment of colorectal cancer. Curr Pharm Des. 2023;29(38):3018-3039. doi: 10.2174/0113816128274742231103063738. DOI: https://doi.org/10.2174/0113816128274742231103063738
Illum L. Blood-brain barrier in drug discovery: Optimizing brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs. John Wiley and Sons; 2015.
Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281-8290. doi: 10.1016/j.biomaterials.2011.07.032. DOI: https://doi.org/10.1016/j.biomaterials.2011.07.032
Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today. 2018;23(5):1079-1088. doi: 10.1016/j.drudis.2018.01.005. DOI: https://doi.org/10.1016/j.drudis.2018.01.005
Alhammid SNA, Kassab HJ, Hussein LS, Haiss MA. Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery. Maaen J Med Sci. 2023;2(2):9. doi: 10.55810/2789-9136.1027. DOI: https://doi.org/10.55810/2789-9136.1027
AL-Mansoori MKI, Sabri LA. Preparation and evaluation of transdermal gel loaded with spanlastics containing meloxicam. J Res Pharm. 2024;28(4). doi: 10.29228/jrp.801 DOI: https://doi.org/10.29228/jrp.801
Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, Ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm. 2017;530(1-2):1-11. doi: 10.1016/j.ijpharm.2017.07.050. DOI: https://doi.org/10.1016/j.ijpharm.2017.07.050
Jaafer H, Al-Kinani KK. Formulation and evaluation of idebenone microemulsion as a potential approach for the transmucosal drug delivery systems. Iraqi J Pharm Sci. 2024;33(1):79–88. doi: 10.31351/vol33iss1pp79-88. DOI: https://doi.org/10.31351/vol33iss1pp79-88
Rashid AM, Abdal-Hammid SN. Formulation and characterization of itraconazole as nanosuspension dosage form for enhancement of solubility. Iraqi J Pharm Sci. 2019;28(2):124–133. doi: 10.31351/vol28iss2pp124-133. DOI: https://doi.org/10.31351/vol28iss2pp124-133
Alkufi HK, Kassab HJ. Formulation and evaluation of sustained release sumatriptan mucoadhesive intranasal in-situ gel. Iraqi J Pharm Sci. 2019;28(2):95–104. doi: 10.31351/vol28iss2pp95-104. DOI: https://doi.org/10.31351/vol28iss2pp95-104
Allah AKA, Abd-Al Hammid SN. Preparation and evaluation of chloramphenicol as thermosensitive ocular in-situ gel. Iraqi J Pharm Sci. 2012;21(2):98–105. doi: 10.31351/vol21iss2pp98-105. DOI: https://doi.org/10.31351/vol21iss2pp98-105
Gu Z, Wan X, Lou Z, Zhang F, Shi L, Li S, et al. Skin Adhesives with controlled adhesion by polymer chain mobility. ACS Appl Mater Interfaces. 2019;11(1):1496-1502. doi: 10.1021/acsami.8b18947. DOI: https://doi.org/10.1021/acsami.8b18947
Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, et al. A review on recent advances in gel adhesion and their potential applications. J Mol Liq. 2021;325:115254. doi: 10.1016/j.molliq.2020.115254. DOI: https://doi.org/10.1016/j.molliq.2020.115254
Chaturvedi D, Bharti D, Dhal S, Sahu D, Behera H, Sahoo M, et al. Role of stearic acid as the crystal habit modifier in candelilla wax-groundnut oil oleogels. ChemEngineering. 2023;7(5):96. doi: 10.3390/chemengineering7050096. DOI: https://doi.org/10.3390/chemengineering7050096
Salih OS, Al-Akkam EJ. Preparation, in-vitro, and ex-vivo evaluation of ondansetron loaded invasomes for transdermal delivery. Iraqi J Pharm Sci. 2023;32(3):71–84. doi: 10.31351/vol32iss3pp71-84. DOI: https://doi.org/10.31351/vol32iss3pp71-84
Abd-Elal RM, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016;23(9):3374-3386. doi: 10.1080/10717544.2016.1183721. DOI: https://doi.org/10.1080/10717544.2016.1183721
Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci. 2018;13(1):72-81. doi: 10.1016/j.ajps.2017.09.001. DOI: https://doi.org/10.1016/j.ajps.2017.09.001
Alkufi HK, Kassab HJ. Delivery of nose to brain in the management of cerebral vasospasm in aneurysmal subarachnoid hemorrhage. J Emerg Med Trauma Acute Care. 2024;2024(6):5. doi: 10.5339/jemtac.2024.absc.5. DOI: https://doi.org/10.5339/jemtac.2024.absc.5
Azhar Shekoufeh Bahari L, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharm Bull. 2016;6(2):143-151. doi: 10.15171/apb.2016.021. DOI: https://doi.org/10.15171/apb.2016.021
Alkufi HK, Kassab HJ. Soluplus-stabilized nimodipine-entrapped spanlastic formulations prepared with edge activator (Tween20): Comparative physicochemical evaluation. Pharm Nanotechnol. 2024. doi: 10.2174/0122117385348551241028102256. DOI: https://doi.org/10.2174/0122117385348551241028102256
Manar TA, Hanan KJ. Optimizing intranasal amisulpride loaded nanostructured lipid carriers: Formulation, development, and characterization parameters. Vol. 12, Pharmaceutical Nanotechnology. 2024. p. 1–16. doi: 10.2174/0122117385301604240226111533 DOI: https://doi.org/10.2174/0122117385301604240226111533
Jaber SH, Rajab NA. Preparation, in-vitro, ex-vivo, and pharmacokinetic study of lasmiditan as iIntranasal nanoemulsion-based in situ gel. Pharm Nanotechnol. 2024. doi: 10.2174/0122117385285009231222072303. DOI: https://doi.org/10.2174/0122117385285009231222072303
Kassab HJ, Alkufi HK, Hussein LS. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J Adv Pharm Technol Res. 2023;14(2):119-124. doi: 10.4103/japtr.japtr_603_22. DOI: https://doi.org/10.4103/japtr.japtr_603_22
Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34–45. DOI: https://doi.org/10.1016/j.ejpb.2007.02.025
Sadeq ZA, Sabri LA, Al-Kinani KK. Natural polymer Effect on gelation and rheology of ketotifen-loaded pH-sensitive in situ ocular gel (Carbapol). J Adv Pharm Educ Res. 2022;12(2–2022):45–50. doi: 10.51847/zOf4TcFeKT. DOI: https://doi.org/10.51847/zOf4TcFeKT
Sabri LA, Hussein AA. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: preparation and in-vitro/ex-vivo evaluation. Iraqi J Pharm Sci. 2020;29(1):216–225. doi: 10.31351/vol29iss1pp216-225 DOI: https://doi.org/10.31351/vol29iss1pp216-225
Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics. 2021;13(12):2049. doi: 10.3390/pharmaceutics13122049. DOI: https://doi.org/10.3390/pharmaceutics13122049
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B. 2021;11(4):925-940. doi: 10.1016/j.apsb.2021.02.012. DOI: https://doi.org/10.1016/j.apsb.2021.02.012
Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int J Pharm. 2021;607:121050. doi: 10.1016/j.ijpharm.2021.121050. DOI: https://doi.org/10.1016/j.ijpharm.2021.121050
Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H. Preparation, characterization, and optimization of asenapine maleate mucoadhesive nanoemulsion using Box-Behnken design: In vitro and in vivo studies for brain targeting. Int J Pharm. 2020;586:119499. doi: 10.1016/j.ijpharm.2020.119499. DOI: https://doi.org/10.1016/j.ijpharm.2020.119499
Barakat NS, Omar SA, Ahmed AA. Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol. 2006;58(1):63-72. doi: 10.1211/jpp.58.1.0008. DOI: https://doi.org/10.1211/jpp.58.1.0008

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).