Nanospanlastic in situ Gel for Nose to Brain Delivery of Nimodipine: In vitro Optimization and in vivo Pharmacokinetic Study

Authors

  • Hussein Kadhum Alkufi Department of Pharmacognosy, College of Pharmacy, University of Thi-Qar, Thi-Qar 64001, Iraq https://orcid.org/0000-0001-6977-6737
  • Hanan Jalal Kassab Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.54133/ajms.v8i1.1687

Keywords:

In situ gel, Nimodipine, Pharmacokinetic study, Probe pull test, Spanlastic nanovesicle

Abstract

Background: The FDA has approved the medication nimodipine (NMD) to treat vasospasm brought on by subarachnoid hemorrhage. The most popular way to administer NMD is intravenously, which can result in several adverse effects, including bradycardia, hypotension, arrhythmias, and inflammation at the administration site. Objective: To evaluate the effectiveness of nose-to-brain (NTB) delivery of NMD as spanlastic nanovesicles (SNV) in situ gel into the brain and compare it with IV infusion. Methods: The nanovesicle formulation by the ethanol injection method used Span 60 as a non-ionic surfactant and Tween 60 as an edge activator for enhanced permeability. The nanovesicle formulation is within the accepted range for nose-to-brain mixing with poloxamer 407 to in situ gel formulation by the cold method. Results: The result was observed in the optimized formula with a particle size of 73.18 nm, a PDI of 0.1646, and higher drug entrapment within the vesicles. The in situ gel with the optimized formula shows gelation temperature with nasal fluid temperature. The in vivo pharmacokinetic behavior of NTB in the optimized formula in blood and brain was contrasted with commercial NMD. In contrast to intravenous administration of the NMD, the results indicate that NTB of NMD in situ gel was able to deliver the same amount of NMD to brain tissue with lower drug levels in blood. Conclusions: The nose-to-brain approach for NMD-SNV may be able to deliver NMD systemically to the brain with less frequent dosing and fewer cardiac adverse effects.

Downloads

Download data is not yet available.

References

Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gijn J, et al. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke. 2005;36(12):2773-2780. doi: 10.1161/01.STR.0000190838.02954.e8. DOI: https://doi.org/10.1161/01.STR.0000190838.02954.e8

Song X, Jiang Y, Ren C, Sun X, Zhang Q, Gong T, et al. Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study. Int J Nanomed. 2012;7:3689-3699. doi: 10.2147/IJN.S33228. DOI: https://doi.org/10.2147/IJN.S33228

Scriabine A, van den Kerckhoff W. Pharmacology of nimodipine. A review. Ann N Y Acad Sci. 1988;522:698-706. doi: 10.1111/j.1749-6632.1988.tb33415.x. DOI: https://doi.org/10.1111/j.1749-6632.1988.tb33415.x

Toescu EC, Verkhratsky A. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell. 2007;6(3):267-273. doi: 10.1111/j.1474-9726.2007.00296.x. DOI: https://doi.org/10.1111/j.1474-9726.2007.00296.x

Soliman GM, Sharma R, Choi AO, Varshney SK, Winnik FM, Kakkar AK, et al. Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials. 2010;31(32):8382-8392. doi: 10.1016/j.biomaterials.2010.07.039. DOI: https://doi.org/10.1016/j.biomaterials.2010.07.039

Langley MS, Sorkin EM. Nimodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs. 1989;37(5):669-699. doi: 10.2165/00003495-198937050-00004. DOI: https://doi.org/10.2165/00003495-198937050-00004

Fu Q, Sun J, Zhang D, Li M, Wang Y, Ling G, et al. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;109:161-166. doi: 10.1016/j.colsurfb.2013.01.066. DOI: https://doi.org/10.1016/j.colsurfb.2013.01.066

Rashed HM, Shamma RN, Basalious EB. Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: in vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery. Drug Deliv. 2016;24(1):181-187. doi: 10.1080/10717544.2016.1236848. DOI: https://doi.org/10.1080/10717544.2016.1236848

Whii F. Intranasal delivery: Bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol. 2002;2(5):46–49.

Kapoor M, Cloyd JC, Siegel RA. A review of intranasal formulations for the treatment of seizure emergencies. J Control Release. 2016;237:147-159. doi: 10.1016/j.jconrel.2016.07.001. DOI: https://doi.org/10.1016/j.jconrel.2016.07.001

Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):681-693. doi: 10.3109/10717544.2014.920431. DOI: https://doi.org/10.3109/10717544.2014.920431

Zhang QZ, Zha LS, Zhang Y, Jiang WM, Lu W, Shi ZQ, et al. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target. 2006;14(5):281-290. doi: 10.1080/10611860600721051. DOI: https://doi.org/10.1080/10611860600721051

Mohsen K, Azzazy HME, Allam NK, Basalious EB. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: In vitro optimization and in vivo pharmacokinetic study. Mater Sci Eng C Mater Biol Appl. 2020;116:111236. doi: 10.1016/j.msec.2020.111236. DOI: https://doi.org/10.1016/j.msec.2020.111236

Badria F, Mazyed E. Formulation of nanospanlastics as a promising approach for ‎improving the topical delivery of a natural leukotriene inhibitor (3-‎Acetyl-11-Keto-β-Boswellic Acid): Statistical optimization, in vitro ‎characterization, and ex vivo permeation study. Drug Des Dev Ther. 2020 Sep 15;14:3697-3721. doi: 10.2147/DDDT.S265167. DOI: https://doi.org/10.2147/DDDT.S265167

Al-Mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. 2017;522(1-2):157-164. doi: 10.1016/j.ijpharm.2017.03.005. DOI: https://doi.org/10.1016/j.ijpharm.2017.03.005

Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1-2):291-298. doi: 10.1016/j.ijpharm.2012.07.003. DOI: https://doi.org/10.1016/j.ijpharm.2012.07.003

Pandey M, Choudhury H, Gorain B, Tiong SQ, Wong GYS, Chan KX, et al. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting. Gels. 2021 Nov 16;7(4):218. doi: 10.3390/gels7040218. DOI: https://doi.org/10.3390/gels7040218

Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based liposomal nanocarriers for drug delivery in lung cancer therapy: Recent progress and future outlooks. Curr Pharm Des. 2024;30(36):2850-2881. doi: 10.2174/0113816128304923240704113319. DOI: https://doi.org/10.2174/0113816128304923240704113319

Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, et al. Nanoparticles containing oxaliplatin and the treatment of colorectal cancer. Curr Pharm Des. 2023;29(38):3018-3039. doi: 10.2174/0113816128274742231103063738. DOI: https://doi.org/10.2174/0113816128274742231103063738

Illum L. Blood-brain barrier in drug discovery: Optimizing brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs. John Wiley and Sons; 2015.

Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281-8290. doi: 10.1016/j.biomaterials.2011.07.032. DOI: https://doi.org/10.1016/j.biomaterials.2011.07.032

Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today. 2018;23(5):1079-1088. doi: 10.1016/j.drudis.2018.01.005. DOI: https://doi.org/10.1016/j.drudis.2018.01.005

Alhammid SNA, Kassab HJ, Hussein LS, Haiss MA. Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery. Maaen J Med Sci. 2023;2(2):9. doi: 10.55810/2789-9136.1027. DOI: https://doi.org/10.55810/2789-9136.1027

AL-Mansoori MKI, Sabri LA. Preparation and evaluation of transdermal gel loaded with spanlastics containing meloxicam. J Res Pharm. 2024;28(4). doi: 10.29228/jrp.801 DOI: https://doi.org/10.29228/jrp.801

Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, Ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm. 2017;530(1-2):1-11. doi: 10.1016/j.ijpharm.2017.07.050. DOI: https://doi.org/10.1016/j.ijpharm.2017.07.050

Jaafer H, Al-Kinani KK. Formulation and evaluation of idebenone microemulsion as a potential approach for the transmucosal drug delivery systems. Iraqi J Pharm Sci. 2024;33(1):79–88. doi: 10.31351/vol33iss1pp79-88. DOI: https://doi.org/10.31351/vol33iss1pp79-88

Rashid AM, Abdal-Hammid SN. Formulation and characterization of itraconazole as nanosuspension dosage form for enhancement of solubility. Iraqi J Pharm Sci. 2019;28(2):124–133. doi: 10.31351/vol28iss2pp124-133. DOI: https://doi.org/10.31351/vol28iss2pp124-133

Alkufi HK, Kassab HJ. Formulation and evaluation of sustained release sumatriptan mucoadhesive intranasal in-situ gel. Iraqi J Pharm Sci. 2019;28(2):95–104. doi: 10.31351/vol28iss2pp95-104. DOI: https://doi.org/10.31351/vol28iss2pp95-104

Allah AKA, Abd-Al Hammid SN. Preparation and evaluation of chloramphenicol as thermosensitive ocular in-situ gel. Iraqi J Pharm Sci. 2012;21(2):98–105. doi: 10.31351/vol21iss2pp98-105. DOI: https://doi.org/10.31351/vol21iss2pp98-105

Gu Z, Wan X, Lou Z, Zhang F, Shi L, Li S, et al. Skin Adhesives with controlled adhesion by polymer chain mobility. ACS Appl Mater Interfaces. 2019;11(1):1496-1502. doi: 10.1021/acsami.8b18947. DOI: https://doi.org/10.1021/acsami.8b18947

Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, et al. A review on recent advances in gel adhesion and their potential applications. J Mol Liq. 2021;325:115254. doi: 10.1016/j.molliq.2020.115254. DOI: https://doi.org/10.1016/j.molliq.2020.115254

Chaturvedi D, Bharti D, Dhal S, Sahu D, Behera H, Sahoo M, et al. Role of stearic acid as the crystal habit modifier in candelilla wax-groundnut oil oleogels. ChemEngineering. 2023;7(5):96. doi: 10.3390/chemengineering7050096. DOI: https://doi.org/10.3390/chemengineering7050096

Salih OS, Al-Akkam EJ. Preparation, in-vitro, and ex-vivo evaluation of ondansetron loaded invasomes for transdermal delivery. Iraqi J Pharm Sci. 2023;32(3):71–84. doi: 10.31351/vol32iss3pp71-84. DOI: https://doi.org/10.31351/vol32iss3pp71-84

Abd-Elal RM, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016;23(9):3374-3386. doi: 10.1080/10717544.2016.1183721. DOI: https://doi.org/10.1080/10717544.2016.1183721

Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci. 2018;13(1):72-81. doi: 10.1016/j.ajps.2017.09.001. DOI: https://doi.org/10.1016/j.ajps.2017.09.001

Alkufi HK, Kassab HJ. Delivery of nose to brain in the management of cerebral vasospasm in aneurysmal subarachnoid hemorrhage. J Emerg Med Trauma Acute Care. 2024;2024(6):5. doi: 10.5339/jemtac.2024.absc.5. DOI: https://doi.org/10.5339/jemtac.2024.absc.5

Azhar Shekoufeh Bahari L, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharm Bull. 2016;6(2):143-151. doi: 10.15171/apb.2016.021. DOI: https://doi.org/10.15171/apb.2016.021

Alkufi HK, Kassab HJ. Soluplus-stabilized nimodipine-entrapped spanlastic formulations prepared with edge activator (Tween20): Comparative physicochemical evaluation. Pharm Nanotechnol. 2024. doi: 10.2174/0122117385348551241028102256. DOI: https://doi.org/10.2174/0122117385348551241028102256

Manar TA, Hanan KJ. Optimizing intranasal amisulpride loaded nanostructured lipid carriers: Formulation, development, and characterization parameters. Vol. 12, Pharmaceutical Nanotechnology. 2024. p. 1–16. doi: 10.2174/0122117385301604240226111533 DOI: https://doi.org/10.2174/0122117385301604240226111533

Jaber SH, Rajab NA. Preparation, in-vitro, ex-vivo, and pharmacokinetic study of lasmiditan as iIntranasal nanoemulsion-based in situ gel. Pharm Nanotechnol. 2024. doi: 10.2174/0122117385285009231222072303. DOI: https://doi.org/10.2174/0122117385285009231222072303

Kassab HJ, Alkufi HK, Hussein LS. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J Adv Pharm Technol Res. 2023;14(2):119-124. doi: 10.4103/japtr.japtr_603_22. DOI: https://doi.org/10.4103/japtr.japtr_603_22

Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34–45. DOI: https://doi.org/10.1016/j.ejpb.2007.02.025

Sadeq ZA, Sabri LA, Al-Kinani KK. Natural polymer Effect on gelation and rheology of ketotifen-loaded pH-sensitive in situ ocular gel (Carbapol). J Adv Pharm Educ Res. 2022;12(2–2022):45–50. doi: 10.51847/zOf4TcFeKT. DOI: https://doi.org/10.51847/zOf4TcFeKT

Sabri LA, Hussein AA. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: preparation and in-vitro/ex-vivo evaluation. Iraqi J Pharm Sci. 2020;29(1):216–225. doi: 10.31351/vol29iss1pp216-225 DOI: https://doi.org/10.31351/vol29iss1pp216-225

Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics. 2021;13(12):2049. doi: 10.3390/pharmaceutics13122049. DOI: https://doi.org/10.3390/pharmaceutics13122049

Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B. 2021;11(4):925-940. doi: 10.1016/j.apsb.2021.02.012. DOI: https://doi.org/10.1016/j.apsb.2021.02.012

Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int J Pharm. 2021;607:121050. doi: 10.1016/j.ijpharm.2021.121050. DOI: https://doi.org/10.1016/j.ijpharm.2021.121050

Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H. Preparation, characterization, and optimization of asenapine maleate mucoadhesive nanoemulsion using Box-Behnken design: In vitro and in vivo studies for brain targeting. Int J Pharm. 2020;586:119499. doi: 10.1016/j.ijpharm.2020.119499. DOI: https://doi.org/10.1016/j.ijpharm.2020.119499

Barakat NS, Omar SA, Ahmed AA. Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol. 2006;58(1):63-72. doi: 10.1211/jpp.58.1.0008. DOI: https://doi.org/10.1211/jpp.58.1.0008

Downloads

Published

2025-02-18

How to Cite

Alkufi, H. K., & Kassab, H. J. (2025). Nanospanlastic in situ Gel for Nose to Brain Delivery of Nimodipine: In vitro Optimization and in vivo Pharmacokinetic Study. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 8(1), 97–105. https://doi.org/10.54133/ajms.v8i1.1687

Issue

Section

Original article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.