Osseointegration and Histological Picture of Titanium Silicon Gallium Alloy vs. Titanium Silicon Alloy and Pure Titanium
DOI:
https://doi.org/10.54133/ajms.v5i.280Keywords:
Gallium, Osseointegration, Implant, Biomaterial, AlloyAbstract
Background: Using titanium alloy with gallium and silicon could speed up the process of osseointegration, which would mean that titanium-silicon-gallium alloy could be used in more therapeutic situations. Objective: To evaluate the osseointegration and histological features of a newly fabricated Ti-Si-Ga alloy implant. Methods: Samples were fabricated utilizing the powder metallurgy technique. The titanium matrix was augmented with alloying components. The composite materials were produced by the compaction process at a pressure of 900 MPa, followed by sintering at a temperature of 800°C. For the in vivo test, ninety cylindrical specimens (3x6 mm in diameter and height, respectively) were prepared by using a wire-cut machine to cut the mentioned measurements from a sintered cylinder (15 mm in diameter and 6 mm in height) (6 cylinders for each group). Results: The Ti-Si-Ga group showed the highest bone formation area and higher push-out values than the commercially pure Ti and Ti-Si groups in this study. Conclusion: The use of gallium as an alloying element improved osseointegration.
Downloads
References
Qassadi W, Alshehri T, Alshehri A. Review on Dental Implantology. Egypt J Hosp Med. 2018;71(1):2217–2225. doi: 10.12816/0045293. DOI: https://doi.org/10.12816/0045293
Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;1;60(3):46–49. doi: 10.1007/s11837-008-0031-1. DOI: https://doi.org/10.1007/s11837-008-0031-1
Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;45(S20):S286–291. doi: 10.1002/JPER.17-0739. DOI: https://doi.org/10.1111/jcpe.12957
Lee JH, Kim YT, Jeong SN, Kim NH, Lee DW. Incidence and pattern of implant fractures: A long-term follow-up multicenter study. Clin Implant Dent Relat Res. 2018;20(4):463–469. doi: 10.1111/cid.12621. DOI: https://doi.org/10.1111/cid.12621
Hassan AH, Al-Judy HJ, Fatalla AA. Biomechanical effect of nitrogen plasma treatment of polyetheretherketone dental implant in comparison to commercially pure titanium. J Res Med Dent Sci. 2018;6(2):367. doi: 10.5455/jrmds.20186257.
Mohammed AA, Hamad TI. Assessment of coating zirconium implant material with nanoparticles of faujasite. J Baghdad Coll Dent. 2021;33(4):25–30. doi: 10.26477/jbcd.v33i4.3016. DOI: https://doi.org/10.26477/jbcd.v33i4.3016
Vijayaraghavan V, Sabane AV, Tejas K. Hypersensitivity to titanium: A less explored Area of research. J Indian Prosthodont Soc. 2012;12(4):201–207. doi: 10.1007/s13191-012-0139-4. DOI: https://doi.org/10.1007/s13191-012-0139-4
Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993;43(3):245–253. PMID: 8406955.
Froes FH, (Ed.), Titanium: physical metallurgy, processing, and applications. ASM international; 2015. doi: 10.31399/asm.tb.tpmpa.9781627083188. DOI: https://doi.org/10.31399/asm.tb.tpmpa.9781627083188
Kim HS, Kim WY, Lim SH. Microstructure and elastic modulus of Ti–Nb–Si ternary alloys for biomedical applications. Scr Mater. 2006;54(5):887–891. doi: 10.1016/j.scriptamat.2005.11.001. DOI: https://doi.org/10.1016/j.scriptamat.2005.11.001
Hsu HC, Wu SC, Hsu SK, Li YC, Ho WF. Structure and mechanical properties of as-cast Ti–Si alloys. Intermetallics. 2014;47:11–16. doi: 10.1016/j.intermet.2013.12.004. DOI: https://doi.org/10.1016/j.intermet.2013.12.004
Hsu HC, Wu SC, Hsu SK, Liao YH, Ho WF. Bioactivity of hybrid micro/nano-textured Ti-5Si surface by acid etching and heat treatment. Mater Des. 2016;104:205–210. doi: 10.1016/j.matdes.2016.05.009. DOI: https://doi.org/10.1016/j.matdes.2016.05.009
Hsu HC, Wu SC, Hsu SK, Liao YH, Ho WF. Effect of different post-treatments on the bioactivity of alkali-treated Ti–5Si alloy. Biomed Mater Eng. 2017;28(5):503–514. doi: 10.3233/BME-171693. DOI: https://doi.org/10.3233/BME-171693
Saxena V, Kumar V, Rai A, Yadav R, Gupta U, Singh VK, et al. Optimization of the bio-mechanical properties of Ti–8Si–2Mn alloy by 1393B3 bioactive glass reinforcement. Mater Res Express. 2019;6(7):075401. doi: 10.1088/2053-1591/ab1280. DOI: https://doi.org/10.1088/2053-1591/ab1280
Qiu C, Lu T, He F, Feng S, Fang X, Zuo F, et al. Influences of gallium substitution on the phase stability, mechanical strength and cellular response of β-tricalcium phosphate bioceramics. Ceram Int. 2020;46(10 Part B):16364–6371. doi: 10.1016/j.ceramint.2020.03.195. DOI: https://doi.org/10.1016/j.ceramint.2020.03.195
Stuart BW, Stan GE, Popa AC, Carrington MJ, Zgura I, Necsulescu M, et al. New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study. Bioact Mater. 2022;8:325–3240. doi: 10.1016/j.bioactmat.2021.05.055. DOI: https://doi.org/10.1016/j.bioactmat.2021.05.055
Verron E, Masson M, Khoshniat S, Duplomb L, Wittrant Y, Baud’huin M, et al. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts. Br J Pharmacol. 2010;159(8):1681–1692. doi: 10.1111/j.1476-5381.2010.00665.x. DOI: https://doi.org/10.1111/j.1476-5381.2010.00665.x
Zhang C, Yang B, Biazik JM, Webster RF, Xie W, Tang J, et al. Gallium nanodroplets are anti-Inflammatory without interfering with iron homeostasis. ACS Nano. 2022;16(6):8891–8903. doi: 10.1021/acsnano.1c10981. DOI: https://doi.org/10.1021/acsnano.1c10981
Verron E, Loubat A, Carle GF, Vignes-Colombeix C, Strazic I, Guicheux J, et al. Molecular effects of gallium on osteoclastic differentiation of mouse and human monocytes. Biochem Pharmacol. 2012;83(5):671–679. doi: 10.1016/j.bcp.2011.12.015. DOI: https://doi.org/10.1016/j.bcp.2011.12.015
Al-Hassani F. Studying the effect of cobalt percentage on the corrosion rate of sintered titanium dental implants. AIP Conference Proceedings. 2019;2190(1). doi: 10.1063/1.5138497. DOI: https://doi.org/10.1063/1.5138497
Hussain Z, N MI, Bk D. Effect of alloying elements on properties of biodegradable magnesium composite for implant application. J Powder Metall Min. 2017;06(03). doi: 10.4172/2168-9806.1000179. DOI: https://doi.org/10.4172/2168-9806.1000179
El-Wassefy N, El-Fallal A, Taha M. Effect of different sterilization modes on the surface morphology, ion release, and bone reaction of retrieved micro-implants. Angle Orthod. 2015;85(1):39–47. doi: 10.2319/012014-56.1. DOI: https://doi.org/10.2319/012014-56.1
Am A, L T, J I. Studying biomimetic coated niobium as an alternative dental implant material to titanium (in vitro and in vivo study). Baghdad Sci J. 2018;15(3):0253–0253. doi: 10.21123/bsj.2018.15.3.0253. DOI: https://doi.org/10.21123/bsj.2018.15.3.0253
Han JM, Hong G, Lin H, Shimizu Y, Wu Y, Zheng G, et al. Biomechanical and histological evaluation of the osseointegration capacity of two types of zirconia implant. Int J Nanomedicine. 2016;11:6507–6516. doi: 10.2147/IJN.S119519. DOI: https://doi.org/10.2147/IJN.S119519
Abdullah ZS, Mahmood MS, Abdul-Ameer FMA, Fatalla AA. Effect of commercially pure titanium implant coated with calcium carbonate and nanohydroxyapatite mixture on osseointegration. J Med Life. 2023;16(1):52–61. doi: 10.25122/jml-2022-0049. DOI: https://doi.org/10.25122/jml-2022-0049
Hanawa T. Titanium–tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol. 2019;7:170. doi: 10.3389/fbioe.2019.00170. DOI: https://doi.org/10.3389/fbioe.2019.00170
Jayasree A, Gómez-Cerezo MN, Verron E, Ivanovski S, Gulati K. Gallium-doped dual micro-nano titanium dental implants towards soft-tissue integration and bactericidal functions. Mater Today Adv. 2022;16:100297. doi: 10.1016/j.mtadv.2022.100297. DOI: https://doi.org/10.1016/j.mtadv.2022.100297
Verron E, Bouler JM, Scimeca JC. Gallium as a potential candidate for treatment of osteoporosis. Drug Discov Today. 2012;17(19):1127–1132. doi: 10.1016/j.drudis.2012.06.007. DOI: https://doi.org/10.1016/j.drudis.2012.06.007
Liu Z, Liu Z, Ji S, Liu Y, Jing Y. Fabrication of Ti-Si intermetallic compound porous membrane using an in-situ reactive sintering process. Mater Lett. 2020;271:127786. doi: 10.1016/j.matlet.2020.127786. DOI: https://doi.org/10.1016/j.matlet.2020.127786
Antonova NV, Tretyachenko LA. Phase diagram of the Ti–Ga system. J Alloys Compd. 2001;317–318:398–405. doi: 10.1016/j.matlet.2020.127786. DOI: https://doi.org/10.1016/S0925-8388(00)01416-X
Matos MA, Araújo FP, Paixão FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg. 2008;3(1):4. doi: 10.1186/1749-799X-3-4. DOI: https://doi.org/10.1186/1749-799X-3-4
Zhao J, Xiao S, Lu X, Wang J, Weng J. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Biomed Mater Bristol Engl. 2006;1(4):188-192. doi: 10.1088/1748-6041/1/4/002. DOI: https://doi.org/10.1088/1748-6041/1/4/002
Ou KL, Hou PJ, Huang BH, Chou HH, Yang TS, Huang CF, et al. Bone healing and regeneration potential in rabbit cortical defects using an innovative bioceramic bone graft substitute. Appl Sci. 2020;10(18):6239. doi: 10.3390/app10186239. DOI: https://doi.org/10.3390/app10186239
Zhao Y, Yang S, Wang G. Study of trabecular bone fracture healing in a rabbit model. Int J Clin Exp Med. 2018;11(8):7651–765. doi: 10.1161/hq1001.097781. DOI: https://doi.org/10.1161/hq1001.097781
Bigham-Sadegh A, Torkestani HS, Sharifi S, Shirian S. Effects of concurrent use of royal jelly with hydroxyapatite on bone healing in rabbit model: radiological and histopathological evaluation. Heliyon. 2020;6(7). doi: 10.1016/j.heliyon.2020.e04547. DOI: https://doi.org/10.1016/j.heliyon.2020.e04547
Li J, Wang GB, Feng X, Zhang J, Fu Q. Effect of gallium nitrate on the expression of osteoprotegerin and receptor activator of nuclear factor‑κB ligand in osteoblasts in vivo and in vitro. Mol Med Rep. 2016;13(1):769–777. doi: 10.3892/mmr.2015.4588. DOI: https://doi.org/10.3892/mmr.2015.4588
Wang M, Yang Y, Chi G, Yuan K, Zhou F, Dong L, et al. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J Mater Chem B. 2021;9(23):4735–4745. doi: 10.1039/D1TB00387A. DOI: https://doi.org/10.1039/D1TB00387A
Gómez-Cerezo N, Verron E, Montouillout V, Fayon F, Lagadec P, Bouler JM, et al. The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses. Acta Biomater. 2018;76:333–343. doi: 10.1016/j.actbio.2018.06.036. DOI: https://doi.org/10.1016/j.actbio.2018.06.036
Li F, Wang J, Huang K, Liu Y, Yang Y, Yuan K, et al. Ga-containing Ti alloy with improved osseointegration for bone regeneration: In vitro and in vivo studies. Compos Part B Eng. 2023;256:110643. doi: 10.1016/j.compositesb.2023.110643. DOI: https://doi.org/10.1016/j.compositesb.2023.110643
Kitsugi T, Nakamura T, Oka M, Yan WQ, Goto T, Shibuya T, et al. Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3). J Biomed Mater Res. 1996;32(2):149-156. doi: 10.1002/(SICI)1097-4636(199610)32:2<149::AID-JBM1>3.0.CO;2-T. DOI: https://doi.org/10.1002/(SICI)1097-4636(199610)32:2<149::AID-JBM1>3.0.CO;2-T
Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:53-76. doi: 10.22203/ecm.v015a05.. DOI: https://doi.org/10.22203/eCM.v015a05
Al-Tamemi EI. Analysis of inflammatory cells in osseointegration of CpTi implant radiated by low level laser therapy. J Baghdad Coll Dent. 2015;27(1):105–110. DOI: https://doi.org/10.12816/0015273
Kasraee K, Yousefpour M, Tayebifard SA. Mechanical properties and microstructure of Ti5Si3 based composites prepared by combination of MASHS and SPS in Ti-Si-Ni and Ti-Si-Ni-C systems. Mater Chem Phys. 2019;222:286-293. doi: 10.1016/j.matchemphys.2018.10.024. DOI: https://doi.org/10.1016/j.matchemphys.2018.10.024
Kasraee K, Yousefpour M, Tayebifard SA. Microstructure and mechanical properties of Ti5Si3 fabricated by spark plasma sintering. J Alloys Compd. 2019;779:942–949. doi: 10.1016/j.jallcom.2018.11.319. DOI: https://doi.org/10.1016/j.jallcom.2018.11.319
Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38(8):612–620. doi: 10.1016/j.jdent.2010.05.013. DOI: https://doi.org/10.1016/j.jdent.2010.05.013
Szmukler‐Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone–dental implant interface: review of experimental literature. J Biomed Mater Res. 1998;43(2):192–203. doi: 10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K. DOI: https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K
Aldrich MB, Rasmussen JC, Fife CE, Shaitelman SF, Sevick-Muraca EM. The development and treatment of lymphatic dysfunction in cancer patients and survivors. Cancers. 2020;12(8):2280. doi: 10.3390/cancers12082280. DOI: https://doi.org/10.3390/cancers12082280
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9). doi: 10.3390/cells9092073. DOI: https://doi.org/10.3390/cells9092073

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).