Role of Quercetin Supplementation on Iron Parameters in Blood Transfusion-Dependent Thalassemia Patients
DOI:
https://doi.org/10.54133/ajms.v7i1(Special).883Keywords:
Iron overload, Quercetin, ThalassemiaAbstract
Background: Thalassemia is a group of inherited blood disorders that affect the production of hemoglobin, a protein in red blood cells that carries oxygen throughout the body. Iron overload is a condition in which the body absorbs and stores too much iron. In addition to repeated blood transfusions, increased gastrointestinal tract (GIT) iron absorption plays an important role in iron overload with thalassemia. Quercetin, a common flavonoid present in fruits and vegetables, exhibits diverse biological effects. Objective: To assess the effect of quercetin on iron overload parameters in blood transfusion-dependent thalassemia patients (TDT). Methods: A randomized, double-blind, placebo-placebo group-led study was conducted on 110 TDT patients, more than 12 years of age, who were supplemented with either quercetin or a placebo capsule daily (500 mg) for 3 months. A blood sample was obtained for laboratory parameters at baseline and at the end of 3 months. Results: At the baseline time of the study, the demographic features and iron overload parameters of patients and the placebo group were not statistically different, while after three months of supplementation, there was a significant decrease in levels of serum iron, UIBC, serum ferritin and ferritin saturation rate, and a significant increase in TIBC in the patients compared with the placebo group. Conclusions: The study shows the significant role of quercetin on iron overload parameters in blood transfusion-dependent thalassemia patients.
Downloads
References
Ali S, Mumtaz S, Shakir HA, Khan M, Tahir HM, Mumtaz S, et al. Current status of beta-thalassemia and its treatment strategies. Mol Genet Genomic Med. 2021;9(12):e1788. doi: 10.1002/mgg3.1788. DOI: https://doi.org/10.1002/mgg3.1788
Putri IM, Gultom FP, Auerkari EI. Genetics and Epigenetics Aspects of Thalassemia. In4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021) 2022 Dec 22 (pp. 288-296). Atlantis Press. doi: 10.2991/978-94-6463-062-6_28. DOI: https://doi.org/10.2991/978-94-6463-062-6_28
Thein SL. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis. 2018;70:54-65. doi: 10.1016/j.bcmd.2017.06.001. DOI: https://doi.org/10.1016/j.bcmd.2017.06.001
Farmakis D, Porter J, Taher A, Cappellini MD, Angastiniotis M, Eleftheriou A. 2021 Thalassaemia international federation guidelines for the management of transfusion-dependent thalassemia. Hemasphere. 2022;6(8):e73. doi: 10.1097/hs9.0000000000000732. DOI: https://doi.org/10.1097/HS9.0000000000000732
Saha J, Panja A, Nayek K. The prevalence of HBB mutations among the transfusion-dependent and non transfusion-dependent Hb E/β-thalassemia children in a Tertiary Center of West Bengal, India. Hemoglobin. 2021;45(3):157-162. doi: 10.1080/03630269.2021.1933023. DOI: https://doi.org/10.1080/03630269.2021.1933023
Matzen AK, Woodland A, Beckett JR, Wood BJ. Oxidation state of iron and Fe-Mg partitioning between olivine and basaltic martian melts. Am Mineralogist. 2022;107(7):1442-1452. doi: 10.2138/am-2021-7682. DOI: https://doi.org/10.2138/am-2021-7682
Man CD, Maideen SF, Rashid A. Knowledge, attitude and practice towards dietary iron among patients with thalassemia and their caregivers in Peninsular Malaysia. Med J Malaysia. 2019;74:365-371.
Sousa L, Oliveira MM, Pessôa MT, Barbosa LA. Iron overload: Effects on cellular biochemistry. Clin Chem Acta. 2020;504:180. doi: 10.1016/j.cca.2019.11.029. DOI: https://doi.org/10.1016/j.cca.2019.11.029
Ansaf A, Faraj SA, Kazem S. The correlation between pituitary gonadotrophins, gonadal sex steroid hormone with ferritin level in pubertal females with thalassemia major at Wassit Province-Iraq 2020. Macedonian J Med Sci. 2021;9(B):806-810. doi: 10.3889/oamjms.2021.6611. DOI: https://doi.org/10.3889/oamjms.2021.6611
Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack ME, Taha AE, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374. doi: 10.3390%2Ffoods9030374. DOI: https://doi.org/10.3390/foods9030374
Lesjak M, Balesaria S, Skinner V, Debnam ES, Srai SK. Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues. Eur J Nutr. 2019;58:743-753. doi: 10.1007%2Fs00394-018-1680-7. DOI: https://doi.org/10.1007/s00394-018-1680-7
Pinto VM, Forni GL. Management of iron overload in beta-thalassemia patients: clinical practice update based on case series. Int J Mol Sci. 2020;21(22):8771. doi: 10.3390/ijms21228771. DOI: https://doi.org/10.3390/ijms21228771
Basu S, Rahaman M, Dolai TK, Shukla PC, Chakravorty N. Understanding the intricacies of iron overload associated with β-Thalassemia: A comprehensive review. Thalassemia Rep. 2023;13(3):179-194. doi: 10.3390/thalassrep13030017. DOI: https://doi.org/10.3390/thalassrep13030017
Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules. 2022;27(9):2901. doi: 10.3390/molecules27092901. DOI: https://doi.org/10.3390/molecules27092901
Azeem M, Hanif M, Mahmood K, Ameer N, Chughtai FR, Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polymer Bull. 2023;80(1):241-246. doi: 10.1007/s00289-022-04091-8. DOI: https://doi.org/10.1007/s00289-022-04091-8
Hezaveh ZS, Azarkeivan A, Janani L, Hosseini S, Shidfar F. The effect of quercetin in iron overload and inflammation in β-thalassemia major patients: A double-blind randomized clinical trial. Complement Ther Med. 2019;46:24-28. doi: 10.1016/j.ctim.2019.02.017. DOI: https://doi.org/10.1016/j.ctim.2019.02.017
Corrente GA, Malacaria L, Beneduci A, Furia E, Marino T, Mazzone G. Experimental and theoretical study on the coordination properties of quercetin towards aluminum (III), iron (III) and copper (II) in aqueous solution. J Mol Liquid. 2021;325:115171. doi: 10.1016/j.molliq.2020.115171. DOI: https://doi.org/10.1016/j.molliq.2020.115171
Papan P, Kantapan J, Sangthong P, Meepowpan P, Dechsupa N. Iron (III)-quercetin complex: Synthesis, physicochemical characterization, and MRI cell tracking toward potential applications in regenerative medicine. Contrast Media Mol Imag. 2020;2020:1-22. doi: 10.1155/2020/8877862. DOI: https://doi.org/10.1155/2020/8877862
Lomozová Z, Catapano MC, Hrubša M, Karlíčková J, Macáková K, Kučera R, et al. Chelation of iron and copper by quercetin B-ring methyl metabolites, isorhamnetin and tamarixetin, and their effect on metal-based Fenton chemistry. J Agricult Food Chem. 2021;69(21):5926-3. doi: 10.1021/acs.jafc.1c01729. DOI: https://doi.org/10.1021/acs.jafc.1c01729
Xiao L, Luo G, Tang Y, Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem Toxicol. 2018;114:190-203. doi: 10.1016/j.fct.2018.02.022. DOI: https://doi.org/10.1016/j.fct.2018.02.022
Kejík Z, Kaplánek R, Masařík M, Babula P, Matkowski A, Filipenský P, et al. Iron complexes of flavonoids-antioxidant capacity and beyond. Int J Mol Sci. 2021;22(2):646. doi: 10.3390/ijms22020646 DOI: https://doi.org/10.3390/ijms22020646
Ramavath HN, Konda V, Pullakhandam R. Quercetin inhibits hephaestin expression and iron transport in intestinal cells: Possible role of PI3K pathway. Nutrients. 2023;15(5):1205. doi: 10.3390/nu15051205. DOI: https://doi.org/10.3390/nu15051205
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural antioxidants in anemia treatment. Int J Mol Sci. 2021;22(4):1883. doi: 10.3390/ijms22041883. DOI: https://doi.org/10.3390/ijms22041883
Yin M, Liu Y, Chen Y. Iron metabolism: an emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic Res. 2021;55(3):296-303. doi: 10.1080/10715762.2021.1898604. DOI: https://doi.org/10.1080/10715762.2021.1898604
Almatroodi SA, Alsahli MA, Almatroudi A, Verma AK, Aloliqi A, Allemailem KS, et al. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules. 2021;26(5):1315. doi: 10.3390/molecules26051315. DOI: https://doi.org/10.3390/molecules26051315
Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, et al. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res. 2021;35(9):4727-4747. doi: 10.1002/ptr.7104. DOI: https://doi.org/10.1002/ptr.7104
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105(2):260-272. doi: 10.3324/haematol.2019.232124. DOI: https://doi.org/10.3324/haematol.2019.232124
Al-Abedy NM, Salman ED, Faraj SA. Frequency of human hemochromatosis HFE gene mutations and serum hepcidin level in iron overload β-thalassaemia Iraqi patients. Public Health. 2019;22(10):S275. doi: 10.36295/ASRO.2019.220934. DOI: https://doi.org/10.36295/ASRO.2019.221023
Pang X, Zhong Z, Jiang F, Yang J, Nie H. Juglans regia L. extract promotes osteogenesis of human bone marrow mesenchymal stem cells through BMP2/Smad/Runx2 and Wnt/β-catenin pathways. J Orthop Surg Res. 2022;17(1):88. doi: 10.1186/s13018-022-02949-1. DOI: https://doi.org/10.1186/s13018-022-02949-1
Meng LQ, Yang FY, Wang MS, Shi BK, Chen DX, Chen D, et al. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. Prostate. 2018;78(11):790-800. doi: 10.1002/pros.23536. DOI: https://doi.org/10.1002/pros.23536

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).