Research Article

Expression of NF-κB mRNA in *Helicobacter pylori* Positive Iraqi Patients with Inflammatory Bowel Diseases and Colorectal Cancer

Sinan Subhi Farhan

Department of Anesthesia, College of Medical Science Techniques, The University of Mashreq, Baghdad, Iraq

Received: 2 Jan 2022; Revised: 1 Feb 2022; Accepted: 10 Feb 2022

Abstract

Background: Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are caused by a combination of variables, including environmental, host-related, and nutritional factors. *Helicobacter pylori* (*H. pylori*) is an environmental risk factor for many GIT disorders and is designated as a class I carcinogen. **Aim:** To investigate the prevalence of *H. pylori* in Iraqi patients diagnosed with IBD and CRC and the expression of NF-κB mRNA in those patients. **Methods:** Patients with GIT symptoms were tested for the existence of IBD and CRC in a cross-sectional observational study. In biopsies taken from GIT lesions, biochemical and histochemical approaches are employed to determine the presence of *H. pylori* and the expression of NF-κB mRNA. **Results:** *H. pylori* tests were positive in 33.3% of CRC patients, although this was not statistically significant compared to those who had negative testing. Only 63.3% of IBD patients had *H. pylori* infection in the CRC group, 53.3% of patients had negative NF-κB expression, whereas all of the patients in the IBD group had a negative test. **Conclusion:** Patients with CRC had a high prevalence of *H. pylori*, whereas IBD patients had a low frequency. Patients with CRC had high levels of NF-κB mRNA expression, whereas patients with IBS had none.

Keywords: *Helicobacter pylori*, NF-κB mRNA expression, colorectal cancer, inflammatory bowel disease

INTRODUCTION

Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are caused by a combination of variables, including environmental, host-related, and nutritional factors [1]. *Helicobacter pylori* (*H. pylori*), gram-negative bacteria, is a known environmental risk factor for many GIT disorders and is designated as a class I carcinogen by the World Health Organization [2]. This bacterium is expected to infect half of the world’s population [3,4]. The cag
in situ hybridization detection kit. Orih patient's to modulate cellular mbedded performed on one biopsy specimen to detect endoscopic diagnosis. Mucosal punch biopsy specimens were collected after (sigmoid) were sampled for intestinal biopsy. Two to four cecum, ascending, transverse, and descending colons them clear the colon. During colonoscopy, each patient's and given laxatives the day before the coloscopy to help them clear the colon. During colonoscopy, each patient's cecum, ascending, transverse, and descending colons (sigmoid) were sampled for intestinal biopsy. Two to four mucosal punch biopsy specimens were collected after endoscopic diagnosis. A biopsy urease test (BUT) was performed on one biopsy specimen to detect *H. pylori* in the tissue sample [15]. In Rapid Urease Medium, the urea reaction produced by *H. pylori* is faster than that produced by other urea-splitting organisms. As a result, the formation of a pink-red or red-violet hue is an efficient test for the diagnosis of *H. pylori*. Negative results were stored for up to 20 hours. For the creation of paraffin embedded tissue blocks, other biopsy tissues were preserved with 10% buffered neutral formalin. Sections of 5 μm thickness were put on conventional slides for H&E staining and on charged slides for in situ hybridization using a biotinylated DNA probe and an in situ hybridization detection kit (Maxim Biotech/USA) to detect NF-κB mRNA [16].

Statistical analysis

Statistical analysis was done using software SPSS 16 for Windows. Differences among groups were evaluated by using Chi-square test and Fisher's exact test (2 x 2 Table). Differences were considered to be statistically significant at P value less than 0.05.

RESULTS

Table 1 illustrates the incidence of IBD and CRC in the patients who were chosen based on their age. The highest prevalence of both illnesses were seen in those over the age of 40 (46.6% and 50%, respectively), while the lowest rates were found in people under the age of 20. (6.8% for each group).

Table 1: Distribution of patients diagnosed with CRC disease and IBD according to age groups compared with those with normal colon (Total n=240)

<table>
<thead>
<tr>
<th>Age ranges (year)</th>
<th>NC (%)</th>
<th>CRC (%)</th>
<th>IBD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>21(23.3)</td>
<td>2(6.8)</td>
<td>2(6.8)</td>
</tr>
<tr>
<td>20-40</td>
<td>23(25.6)</td>
<td>14(46.6)</td>
<td>13(43.2)</td>
</tr>
<tr>
<td>>40</td>
<td>46(51.1)</td>
<td>14(46.6)</td>
<td>15(50)</td>
</tr>
<tr>
<td>Total</td>
<td>90(100)</td>
<td>30(100)</td>
<td>30(100)</td>
</tr>
</tbody>
</table>

The prevalence of *H. pylori* in the selected patients with GIT complaints is shown in Table 2. *H. pylori* was found in 66.7% of patients with normal colons, which is statistically significant when compared to patients who tested negative for *H. pylori* (P<0.5). Meanwhile, 33.3% of CRC patients had a positive *H. pylori* test, which was not statistically significant when compared to those who had a negative test. Only 63.3% of IBD patients tested positive for *H. pylori*, which was shown to be non-significant when compared to those who tested negative. The majority of patients in the NC group (58.33%) had low *H. pylori* density, whereas 25% had notable *H. pylori* density, according to the H&E staining test of tissue sections. The majority of patients in the CRC group (44.5%) had moderate *H. pylori* density, while 22.2% had significant density.
Table 2: *H. pylori* prevalence among different age groups of patients diagnosed with CRT disease and IBD based on BUT results.

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>NC (n=90)</th>
<th>CRC (n=30)</th>
<th>IBD (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ve(%)</td>
<td>-ve(%)</td>
<td>+ve(%)</td>
</tr>
<tr>
<td><20</td>
<td>6(28.6)</td>
<td>15(71.4)</td>
<td>1(50)</td>
</tr>
<tr>
<td>20-40</td>
<td>9(39.1)</td>
<td>14(60.9)</td>
<td>8(57.1)</td>
</tr>
<tr>
<td><40</td>
<td>15(32.6)</td>
<td>31(67.4)</td>
<td>11(78.6)</td>
</tr>
<tr>
<td>Total</td>
<td>30(33.3)</td>
<td>60(66.7)</td>
<td>20(66.7)</td>
</tr>
</tbody>
</table>

In the IBD group, only 44% of patients had moderate *H. pylori* density and 11% had significant *H. pylori* density, indicating a similar pattern. Significant differences were not found in statistical analysis of the data (Table 3).

Table 3: *H. pylori* density in different groups based on H&E staining method.

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Mild (%)</th>
<th>Moderate (%)</th>
<th>Marked (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>14(58.3)</td>
<td>4(16.7)</td>
<td>6(25)</td>
<td>24</td>
</tr>
<tr>
<td>CRC</td>
<td>6(33.3)</td>
<td>8(44.5)</td>
<td>4(22.2)</td>
<td>18**</td>
</tr>
<tr>
<td>IBD</td>
<td>4(44.5)</td>
<td>4(44.5)</td>
<td>1(11)</td>
<td>9**</td>
</tr>
<tr>
<td>Total</td>
<td>36(38.7)</td>
<td>35(37.6)</td>
<td>22(23.7)</td>
<td>93</td>
</tr>
</tbody>
</table>

Table 4 shows that 75% of NC patients had negative NF-κB expression, which was not statistically significant when compared to those who had positive NF-κB expression (25%). However, 53.3% of patients in the CRC group had negative NF-κB expression, while all patients in the IBD group had negative NF-κB expression testing. Figure 1 shows the different levels of NF-κB expression in tissue sections taken from the patients compared to sections with no expression.

Table 4: Expression of NF-κB mRNA in different age groups of patients with CRC and IBD based on in situ hybridization results.

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>NC (n=24)</th>
<th>CRC (n=30)</th>
<th>IBD (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ve(%)</td>
<td>-ve(%)</td>
<td>+ve(%)</td>
</tr>
<tr>
<td><20</td>
<td>2(40)</td>
<td>3(60)</td>
<td>0</td>
</tr>
<tr>
<td>20-40</td>
<td>3(42.9)</td>
<td>4(57.1)</td>
<td>8(57.2)</td>
</tr>
<tr>
<td><40</td>
<td>1(8.3)</td>
<td>11(91.7)</td>
<td>6(42.8)</td>
</tr>
<tr>
<td>Total</td>
<td>6(25)</td>
<td>18(75)</td>
<td>14(46.5)</td>
</tr>
</tbody>
</table>

DISCUSSION

Infection with *H. pylori* may be the most common human infection and in many populations, and infection rates of 80-90% are not unusual [17]. The prevalence of *H. pylori* infection also varies widely by geographic area, age, race, and socioeconomic status; however, only few of those colonized people developed diseases related to *H. pylori* [18]. Regarding IBD, there are many evidences supporting a multifactorial genesis comprising a combination of genetic predisposition, immune response, and environment, most notably the bacterial gut microbes or luminal antigens [19]. Certain studies detected *H. pylori* infection among IBD patients, so they suggested a possible role of *H. pylori* in IBD group, although other studies suggested no possible role of *H. pylori* in IBD indicating that the role of *H. pylori* in IBD is still controversial [20]. The present study disclosed presence of *H. pylori* in 66.7% of CRC patients and 36.7% of IBD patients compared to 33.3% in the NC group, and analysis of data reflects non-significant differences. A recent meta-analysis study demonstrates that colorectal adenoma, advanced adenoma, and cancer were all associated with *H. pylori* infection [21], a result that support our primary finding in this regard. The role of inflammation and *H. pylori*-mediated activation of NF-κB in transcriptional regulation in cancer was recently clarified [22].

Table 4: Expression of NF-κB mRNA in different age groups of patients with CRC and IBD based on in situ hybridization results.

The present study highlighted the influence of *H. pylori*-induced NF-κB mRNA expression of high rate in CRC patients, while none of the IBD patients demonstrates positive results. However, NF-κB is involved as an important inflammatory signaling pathway in the pathogenesis of IBD [23]. Early studies have reported that constitutive NF-κB activation was found in the inflamed intestinal tissues of IBD patients [24], which was in conflicts with the reported outcomes in the present study. Previous studies also suggest that apoptosis and DNA damage are increased in GIT cells during infection with *H. pylori* [25]. Chronic *H. pylori* infection results in generation of a subpopulation of epithelial cells with high levels of DNA damage that are resistant to apoptosis [26]. The accumulation and survival of cells with damaged DNA heightens the risk of development of GIT cancers [27]. Moreover, the effectiveness of GIT epithelium cytoprotection has been found closely related to the virulence of *H. pylori* strains, particularly CagA subtypes.
[28]. The reason for the inconsistent findings reported to date is unclear, but it might be at least partly explained by the methodological issue. These include selection bias, small sample sizes and an inadequate consideration of potential confounding variables in the data analysis. One of the limitations of the present study is the small sample size which do not enable achieving significant differences in the obtained outcomes.

Conclusion

A relatively high *H. pylori* prevalence was detected only at the site of lesion of patients with colorectal cancers, and low prevalence in IBD patients. Patients with CRC showed high levels of NF-κB mRNA expression, while completely missed in IBS group.

Acknowledgement

The author thanks University of Baghdad for supporting the project.

Conflict of interests

The author declared no conflicting interests.

Data sharing statement

The datasets analyzed during the current study will be available from the corresponding author on a reasonable request.

REFERENCES

