Al-Rafidain J Med Sci. 2025;9(2):58-64.

DOI: https://doi.org/10.54133/ajms.v9i2.2148

Review Article

Molecular Mechanism of Physical Exercise in Increasing Genetic Expression of Sirtuin 1 (SIRT1): A Systematic Review

Novadri Ayubi¹* , Junian Cahyanto Wibawa² , Anton Komaini³ Ainun Zulfikar Rizki¹, Alvin Afandi¹, Mohammed Aljunaid⁴, Mert Kurnaz⁵, Joseph Lobo⁶

¹Faculty of Sport and Health Sciences, Universitas Negeri Surabaya, Surabaya, Indonesia; ²Department of Physical Education, Health and Recreation, STKIP PGRI Trenggalek, Trenggalek, Indonesia; ³Faculty of Sport Science, Universitas Negeri Padang, Padang, Indonesia; ⁴Faculty of Medicine, Taiz University, Taiz, Yemen; ⁵Faculty of Sport Science, Haliç Üniversitesi, Istanbul, Turkey; ⁶College of Sports, Exercise and Recreation, Bulacan State University, Philippines

Received: 5 June 2025; Revised: 26 August 2025; Accepted: 4 September 2025

Abstract

Background: Obesity is associated with decreased levels of protein sirtuin 1 (SIRT1). This decrease can disrupt SIRT1 activity, leading to reduced antioxidant defenses, increased oxidative stress, impaired fatty acid oxidation, and reduced energy expenditure. These changes can contribute to a positive energy balance and long-term weight gain. Exercise is an alternative way to prevent decreased sirtuin 1 level. Sirtuin 1 plays a role in cell maintenance, stress markers, determining cell fate, maintaining energy balance, preventing DNA damage, and maintaining the stability and continuity of cell function. Objective: This study aims to determine and measure how the mechanism of physical exercise can increase the expression of SIRT1. Methods: Several journal databases, such as Embase, PubMed, Web of Science, ScienceDirect, and Scopus, were searched for this study. The criteria for this study included papers on oxidative stress, physical exercise, and SIRT1 published during the previous five years. The only publications rejected for inclusion in this analysis were those published in non-reputable journals. Using Embase, Web of Science, PubMed, ScienceDirect, and Scopus databases, a total of 1,891 publications were found. These systemic breakthrough criteria have been examined and discussed in about 9 studies. Results: Physical exercise can increase the expression of SIRT1. Conclusions: Physical exercise is proven to increase the expression of SIRT1 to influence the increase of biogenesis in mitochondria, which will have a favorable and beneficial impact on the degree of human health.

Keywords: Molecular mechanisms, Oxidative stress, Physical exercise, SIRT1.

الآلية الجزيئية للتمرينات البدنية في زيادة التعبير الجيني للسيرتوين 1 (SIRT1): مراجعة منهجية

لخلاصة

الخلفية: ترتبط السمنة بانخفاض مستويات البروتين سيرتوين 1 (SIRT1). يمكن أن يؤدي هذا الانخفاض إلى تعطيل نشاط SIRT1، مما يؤدي إلى تقليل الدفاعات المصادة للأكسدة، وزيادة الإجهاد التأكسدي، وضعف أكسدة الأحماض الدهنية، وتقليل إنفاق الطاقة. يمكن أن تساهم هذه التغييرات في توازن الطاقة الإجهاد، وتحديد مصير الخلية، على المدى الطويل. التمرين هو طريقة بديلة لمنع انخفاض مستوى السيرتوين 1. يلعب Sirtuin 1 دورا في صيانة الخلايا، وعلامات الإجهاد، وتحديد مصير الخلية، والحفاظ على استقرار واستمرارية وظيفة الخلية. الهدف: تهدف هذه الدراسة إلى تحديد وقياس كيف يمكن لآلية التمرين البدني أن تزيد من التعبير عن SIRT1. الطرائق: تم البحث في العديد من قواعد بيانات المجلات ، مثل SEMDase و PubMed و Web of Science والتمارين البدنية و SienceDirect المنشورة خلال السنوات الخمس الماضية. كانت المنشورات الوحيدة التي تم رفضها لإدراجها في هذا التحليل هي تلك المنشورة في المجلات غير ذات السمعة الطيبة. باستخدام قواعد بيانات Embase الماضية. كانت المنشورات الوحيدة التي تم رفضها لإدراجها في هذا التحليل هي تلك المنشورة في المجلات غير ذات السمعة الطيبة. باستخدام قواعد بيانات Scopus و كول ولا ولي ولا ولي ولا ولي ولا المنظمية على درجة صحة الإنسان. المتابع عن التعارين البدنية من التعبير عن Sirti التأثير إيجابي ومفيد على درجة صحة الإنسان.

* Corresponding author: Novadri Ayubi, Faculty of Sport and Health Sciences, Universitas Negeri Surabaya, Surabaya, Indonesia; Email: novadriayubi@unesa.ac.id

Article citation: Ayubi N, Wibawa JC, Komaini A, Rizki AZ, Afandi A, Aljunaid M, Kurnaz M, Lobo J. Molecular Mechanism of Physical Exercise in Increasing Genetic Expression of Sirtuin 1 (SIRT1): A Systematic Review. Al-Rafidain J Med Sci. 2025;9(2):58-46. doi: https://doi.org/10.54133/ajms.v9i2.2148

© 2025 The Author(s). Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).

INTRODUCTION

Sirtuin has a very important role as a cell guardian and stress marker; it determines cell fate, maintains energy balance, prevents DNA damage, and maintains the stability and continuity of cellular work [1]. The repeated induction that occurs in skeletal muscles during physical performance is the most important part of the muscle remodeling mechanism that has a positive effect on the body [2]. Exercise makes the

body experience extraordinary physiological mechanisms, especially the increase in skeletal muscle contraction, which will trigger an increase in ATP demand. This response has an impact on cellular glucose uptake and fatty acid oxidation to produce more ATP and NAD⁺, which serves as a fuel supply for sirtuin 1 (SIRT1) [3]. Among the seven types of sirtuin, sirtuin 1 is known to play an important role in the cell signal transduction process, which is involved in metabolic processes in mitochondria, DNA repair,

regulation of inflammation, and cellular aging [4]. One of the deadly non-communicable diseases is metabolic syndrome, which is characterized by overweight patients, high blood glucose levels, high blood pressure, and abnormalities in fat tissue, which has a high risk of mortality worldwide [5]. In patients with type 2 diabetes mellitus (T2DM), metabolic syndrome has an adverse effect on increasing the risk of degenerative diseases such as cardiovascular disease [6]. Chronic hyperglycemia triggered by abnormalities in insulin hormone secretion caused by obesity is a characteristic of people with diabetes mellitus [7]. Statistical results from the International Diabetes Federation in 2021 show that 537 million people have diabetes mellitus in 2021 worldwide, and this number will continue to increase to around 783 million sufferers in 2045 [7]. The beneficial effects of sirtuin make it an interesting gene to study, especially as a therapy in preventing metabolic syndrome and neurodegenerative diseases [8]. Overweight and overeating factors that are not accompanied by increased physical activity are the main causes contributing to T2DM worldwide [9]. In this case, both developed and developing countries are not an exception; insulin resistance, type 2 diabetes mellitus, and obesity are public health problems that should be watched out for [10]. Exercise is a very effective medicine in preventing or reducing these diseases [11]. The activity and expression of sirtuin positively affects the function of mitochondrial organelles in biogenesis but also affects the effectiveness of metabolism and increases the secretion of antioxidant enzymes [12]. Based on the results of the study, it is proven that physical exercise can increase the formation of ROS by increasing the metabolic rate in mitochondria, which has an impact on increasing oxidative stress [13]. Exercise intensity strongly influences exercise-induced oxidative stress [14]. Sport is a strategy in efforts to improve human health status [15]. Tissue damage caused by oxidative stress triggered by exercise will result in an inflammatory process [16]. ROS generated during exercise will affect and induce various signal transductions as a physiological adaptation of skeletal muscle [17]. A temporary inflammation response characterized by changes in various proinflammatory cytokines such as IL-1 β , IL-6, IL-10, and TNF- α also occurs as a result of acute physical exercise [18]. Excess ROS will also have an adverse effect on skeletal muscle contractile disorders so that it will also weaken muscle function [13]. Although regular physical exercise increases the production of ROS (reactive oxygen species), the presence of sirtuin also has a beneficial effect on the repair and increase of antioxidants as a body defense system that will protect tissues from damage caused by ROS [19]. Results from studies have highlighted the key role of sirtuin 1 in adipogenesis, and its targets include transcription factors such as peroxisome proliferator-activated receptor gamma (PPARy) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) [20]. Previous research has partially discussed the impact of physical exercise on increasing SIRT 1, but the information provided still discusses little about the physiological mechanisms that occur during physical exercise in increasing SIRT1 [20]. The important effects of SIRT1 have been discussed, but there is still limited research on the relationship between SIRT1 expression during exercise and how its mechanisms may improve public health. Therefore, in this scientific review, we will discuss and explore in depth how physical exercise influences increased SIRT 1 expression and how its molecular mechanisms promote public health.

METHODS

Study design

To determine how physical exercise impacts SIRT1 levels, this study was conducted by evaluating academic literature. PubMed, Scopus, ScienceDirect, Web of Science, and Embase were search engines used to locate scientific papers. The search terms used were "physical exercise" and "SIRT1." Article selection was based on the following inclusion criteria: English language proficiency, experimental research and studies, and year of publication. Furthermore, articles that did not meet the inclusion criteria, including non-exercise interventions, non-experimental studies, and parameters other than SIRT1, were excluded from our analysis and were subject to exclusion criteria.

Eligibility criteria

The inclusion criteria for this study were met by studies on oxidative stress, physical exercise, and SIRT1 published within the last five years in reputable journals. The only studies excluded from this systematic review were articles published in non-reputable journals. Furthermore, the study did not directly use animal or human samples for experimental testing.

Procedure

Full text, abstracts, and titles of verified and approved articles were archived to the Mendeley database using Embase, PubMed, Scopus, ScienceDirect, and Web of Science databases. 1,891 publications were found during the first part of the study. In the second step, 1,150 entries were evaluated based on how well the abstract and title met the researcher's requirements. The third stage consisted of verifying 364 items for further processing. We now filtered based on whether the issue was acceptable for the overall discussion or not. After careful consideration, 9 papers that met the inclusion criteria were selected for this systematic review. This study supports the assessment of standard operating procedures using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Figure 1).

RESULTS AND DISCUSSION

Table 1 shows the studies related to the effect of physical exercise in increasing SIRT1 expression.

Figure 1: PRISMA flowchart of the article selection process.

Physical exercise regulates oxidation reactions by increasing the levels of free radicals in the body, such as ROS (reactive oxygen species), and regulates the defense system of the body by increasing endogenous antioxidant levels [29]. In addition, oxidative stress that increases during exercise is also caused by the levels of free radicals in the body being higher than the levels of antioxidants [30]. Acute aerobic physical exercise is a fundamental aspect of exercise that can improve people's health by increasing the work system of the cardiovascular system and increasing cardiac output so as to increase the metabolic system to meet the performance of the musculoskeletal system [31]. Aerobic physical exercise can affect maximal oxygen uptake in an effort to increase ATP production in mitochondria, which can benefit the increase in oxidative capacity and have an impact on reducing muscle fatigue after physical exercise [32]. Regular exercise is known to prevent skeletal muscle aging as well as prevent sarcopenia, which is age-related loss of muscle mass [33]. Physical exercise has also been shown to increase skeletal muscle contraction and improve muscular endurance [34]. Malondialdehyde (MDA) is one of the biomarkers of oxidative stress caused by physical exercise [35]. Research results from Souissi et al. (2020) proved that there was an increase in MDA levels after physical exercise. Key enzymes that assist the body's defense system in counteracting free radicals are glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) [35]. SOD is an endogenous antioxidant that functions in converting H2O2 into H2O and is also assisted by glutathione peroxidase and catalase [21]. Increased oxidative stress during exercise also has a positive effect on increasing SIRT expression. Besides that, SIRT is also involved in the process of biogenesis, improving mitochondrial function, and increasing body antioxidants [12]. The results of a study in 20 healthy men who performed running training on a treadmill with moderate and high intensity were shown to increase SIRT1 expression after the intervention [29]. A report from Souissi et al., 2020, proved that intermittent physical exercise at 75% VO_{2max} can significantly increase MDA levels [36]. Regular aerobic physical exercise can reduce oxidative stress by increasing antioxidant levels in the body, making the body healthier [37]. Previous research findings suggest that 8 weeks of physical therapy and HIIT positively impacted the metabolic profile of participants with metabolic syndrome (MetS) compared to a control group. This short-term period of physical therapy and HIIT, combined with a reduction in cardiometabolic risk factors, increased SIRT1 levels in women with MetS [38]. Studies of metabolic disorders have sparked interest in the role of the mammalian SIRT1 protein (encoded by the SIRT1 gene), as this protein plays a role in important physiological functions such as glucose metabolism and lipid breakdown [39]. Only a few studies have investigated the effects of different types of physical activity on serum SIRT1 levels. For example, Ferrara et al. reported that six weeks of HIIT training increased SIRT1 activity levels [40]. Studies have revealed that exercise causes an increase in SIRT1 activity and protein levels [41]. Another study conducted by Jia et al. reported that sustained, moderate-intensity exercise can increase SIRT1 levels in people with heart disease [42]. Contrary to the findings of this study, Ma et al. showed that four weeks of high-intensity exercise training did not affect SIRT1 levels in healthy men [43], and Marton et al. showed that physical exercise did not significantly affect serum SIRT1 levels [44]. Therefore, further exploration through experimental studies warranted, and we are interested in pursuing this in the future. However, this systematic review provides a snapshot of the literature showing that physical exercise supports SIRT1 upregulation. SIRT is an NAD⁺-dependent deacetylase that has important roles regulating oxidative stress, transcription, metabolism, DNA repair, and cell cycle progression [29]. Another report is that 30 overweight women participated and contributed to the training protocol, namely the 20 m shuttle run with a maximum speed of 30 seconds carried out 3x a week for 10 weeks of treatment. The results of the study prove that there is an increase in SIRT1 levels after physical exercise [30]. As we age, we experience a decline in body function, which, if not matched with regular physical exercise, will trigger an increase in inflammation that will adversely affect the development of various diseases [45]. In people with obesity, SIRT1 levels in the blood are decreased [46]. Existing evidence reports that high-intensity interval training has favorable benefits on increasing the expression of SIRT1, PGC-1α, and CAT, which also makes it a lowcost treatment for overweight and obesity [47]. A study on recreational runners (18-35 years) practicing given an aerobic physical exercise using an ergometer until fatigue and reached their maximum performance proved that there was an increase in SIRT1 expression after undergoing physical exercise [31]. Measurement of SIRT1 in blood samples in the future can be a special method to be studied further, especially with regard to obese patients who are undergoing pharmacological and non-pharmacological treatment [48].

Table 1: Results of the Author	he effect of physical exercise in in Sample Characteristics	creasing SIRT1 expr Study Design	Ession Intervention	Results
(Cho et al., 2022)	20 healthy men participated in	Experimental	Performed running training on	There was an increase in
[21]	were divided into two treatment	1	a treadmill. The moderate	SIRT-1 expression in all
	groups: a moderate-intensity		intensity group ran with 65%	groups after the physical
	exercise group and a high-		VO2Max, the high intensity	exercise intervention.
	intensity exercise group.		group ran with 85% VO2Max.	
(Ghasemi et al.,	30 overweight young women	Experimental	The training protocol was a	There was an increase in the
2020) [22]	aged 20-30 years were divided		20m shuttle run with a max	highest SIRT-1 levels in the
	into 3 treatment groups. These		speed of 30 sec. The training	HIIT + green tea group after
	were green tea + HIIT, HIIT +		protocol was 3x a week for 10	10 weeks of treatment.
	placebo, and without treatment		weeks.	
(D 41 4 4 1	groups.	C 1	T1 1 1	TT (1 1:1 4
(Potthast et al.,	63-75 recreational runners aged	Cross-sectional	The test protocol used a	There was the highest
2020) [23]	18-35 years were divided into 3		bicycle ergometer until	increase in SIRT-1
	groups. The 1st was omnivore consumption+ exercise, lacto-		exhaustion. The sample was also given verbal motivation	expression in the omnivore
	ovo vegetarian+ exercise,		to reach their max	group.
	vegan+exercise.		performance.	
(Amirsasan et al.,	44 overweight and sedentary	Experimental	Pilates training with 40% -	There was an increase in
2019) [24]	women were divided into 4	Емрегипении	70% intensity for 60 minutes	SIRT-1 expression in the
2017)[21]	groups. The 1st was Pilates		per session, 3 x a week for 12	treatment groups. However,
	training, the 2nd was turmeric		weeks of treatment.	the highest increase
	supplementation, the 3rd was			occurred in the pilates
	Pilates training+ turmeric			training+turmeric group.
	supplementation, the 4th was			
	control without intervention.			
(Wasserfurth et		Experimental	Exercise training was	There was a significant
al., 2021) [25]	50 and 70 were divided into 4		conducted for 12 weeks at the	increase in SIRT-1
	groups: control group, exercise		fitness center; the intensity	expression in the 3 exercise
	only group, exercise and diet		gradually increased.	intervention groups. The
	counseling group, exercise and			highest increase occurred in
	Calanus finmarchicus oil supplementation group.			the exercise+Calanus finmarchicus oil group.
(Sadek MD et al.,	40 male Wistar rats were	Experimental	Swim training in individual	SIRT-1 expression activity
2019) [26]	divided into 4 groups: control	Experimentar	tanks filled with water for 1	increased in the group with
	group without treatment,		hour per day, 5x a week for 4	exercise intervention.
	diabetic group without		weeks.	
	exercise, post-diabetic exercise			
	group, and pre-diabetic			
	exercise group.			
(Shi et al., 2023)	75 rats aged 6 months were	Experimental	Treadmill training with warm-	There was the highest
[27]	divided into 5 groups: normal		up 6m/min for 5 minutes,	increase in SIRT-1
	control, control with		exercise 9 m/min and 13	expression in the group with
	Alzheimer, chlorogenic acid+		m/min for 28 min, cool down	exercise + chlorogenic acid
	Alzheimer, aerobic exercise+		6m/min for 4 min, total	intervention.
	Alzheimer, aerobic exercise+		training 5 times a week. The	
	Alzheimer+chlorogenic acid.		total duration of	
			acclimatization+formal	
(Baskaran et al.,	40 Kyoto Wistar and SHR rats	Experimental	training is 9 weeks. Rats were allowed to swim in	There was the highest
(Baskaran <i>et al.</i> , 2022) [28]	aged 12 weeks were divided	Experimental	a plastic tank with a height of	increase in SIRT-1
2022) [28]	into 5 groups: Kyoto Wistar rat		50 cm. Animals were trained	expression in the SHR +
	control group, SHR rat control		to swim for 20 min in the 1st	exercise group.
	group, SHR+exercise group,		week, 40 min in the 2nd week,	entroise group.
	SHR+VH-4 protein use,		60 min in the 3rd week, during	
	SHR+VH-4 protein use+		weeks 4, 5, 6, 7, and 8 were	
	exercise.		trained for 60 min.	
(Aird et al., 2021)	28 healthy male subjects were	Experimental	3 weeks of 3 times a week	There was the highest
[2]	divided into 3 groups: fasting		physical training. SIT training	increase in SIRT-1
	group (FAST), WPC-fed		included 4 to 6 "all-out"	expression in the WPC
	(WPC), or WPH-fed (WPH).		Wingate cycle sprints each	group.
			session (4 sprints in sessions	
			1-3, 5 in sessions 4-6, and 6 in	
			sessions 7-9), with the	
			identical warm-up, cool-	
			down, and recovery intervals for each session.	
			ioi cacii sessioii.	

Exercise has been shown to increase MDA levels as a biomarker of oxidative stress triggered by increased ROS during physical exercise [49]. In addition, exercise also increases the expression of SIRT1, which affects the increase of biogenesis in mitochondria 12. During physical exercise the mitochondrial organelles also go through a phase of adaptation to exercise [43]. Many studies have reported that SIRT1 expression plays an important role in oxidative stress responses triggered by physical exercise [31]. The results of a study on 44 overweight women who did Pilates training with an intensity of 40% - 70% for 60 minutes per session 3x a week for 12 weeks proved that there was an increase in SIRT1

expression [32]. Endurance physical training has been shown to increase skeletal muscle contraction activity and AMPK and induce SIRT1 expression [32]. The results of another study in 134 research participants aged 50-70 years participating in a 12-week exercise study at a fitness center proved that there was an increase in SIRT1 expression after physical exercise [33]. Of the many types of sirtuins, SIRT1 and SIRT3 are often studied and are the subject of discussion because of their beneficial impact on many metabolic energy processes, especially those caused by physical exercise, in addition to regulating systemic adaptation caused by exercise [18]. SIRT3 and SIRT1 contribute to the regulation of mitochondrial biogenesis and fatty acid oxidation, while SIRT1 is also involved in the regulation of glucose homeostasis [33]. Another research report on 40 Wistar albino rats participating in a study with a swimming training intervention in individual tanks filled with water for 1 hour per day, 5x a week for 4 weeks, proved that there was an increase in SIRT1 expression after being given a physical training intervention [34]. The results of the next study on mice given swimming physical exercise intervention also proved to be able to increase SIRT1 expression [21]. Over the last decade physical exercise has become an important part of experimental clinical studies in order to improve health and longevity due to its positive effects [50]. There are two types of sports activities, namely sports with aerobic endurance and sports with anaerobic endurance [47]. Aerobic exercise is defined as any activity that uses major muscle groups and relies on aerobic metabolism to form adenosine triphosphate (ATP) as the main energy supply for the body [51]. The following is a picture of the mechanism by which physical exercise increases SIRT1 expression (Figure 2).

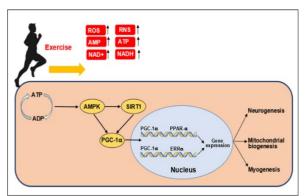


Figure 2: Mechanism of physical exercise increases SIRT1 expression.

Physical exercise has been shown to increase ATP production and also increase energy-forming activity in the mitochondria [51]. One of the modulators of exercise signaling associated increased physiological adaptation is AMP-activated protein kinase (AMPK), which is widely expressed in all cells, tissues, and organs, including skeletal muscle, heart, liver, and adipose tissue [52]. AMPK is an enzyme that has an important role in the regulation of energy balance that exerts effects in increasing glucose uptake, fatty acid oxidation, mitochondrial biogenesis [53]. AMPK during physical exercise exerts beneficial effects, including increasing fatty acid oxidation and lipolysis in adipose tissue [53]. Sirtuin is involved in various biological cellular activities such as DNA repair, inflammatory response, and metabolism. In addition, sirtuin is also involved in apoptosis and cell secretion and is thus directly involved in influencing the cellular aging process [54]. The results of research on mice that regulate energy restriction have provided evidence that it can delay cellular aging. The mice that were given the calorie restriction intervention lived longer than the normal group [55]. By exercising, the body will increase total energy expenditure, which has the benefit of reducing energy in the body [56]. In addition to regulating various biological signals, SIRT1 can also treat and prevent age-related diseases such as diabetes mellitus, cardiovascular system disorders, and neurodegenerative diseases [54]. Therefore, recent research on AMPK and SIRT1 is needed to provide therapy related to aging [54]. A report from Bayond in 2012 proved that there was an increase in SIRT1 and PGC-1α in rat muscle after being given a 36-week treadmill training intervention, and not only that but also an increase in antioxidant levels [12]. An increase in SIRT1 activity, triggered by an increase in NAD⁺ levels, which in turn affects the upregulation of PGC-1a transcriptional activity [53]. On the other side of the response to exercise, SIRT1 also contributes to increased mitochondrial through PGC-1α-dependent biogenesis Mitochondrial biogenesis function is also very closely influenced by peroxisome proliferator-activated receptor γ coactivator 1α PGC-1α [57]. Thus, the expression of PGC-1α can improve the biogenesis mechanism in mitochondria, which will provide physiological benefits during physical exercise [58]. Of course, in this review, it has been widely described how physical exercise can increase biogenesis in mitochondria and the role of other proteins or genes that are affected by physical exercise. In this review, the author still has limitations on the research that has been done. The discussion that has been written by researchers still discusses only how SIRT1 can be expressed during physical exercise, what the mechanism is, and the stages that affect it. In data, further scientific study is still needed related to the effects of physical exercise on various types of SIRT ranging from SIRT1 to SIRT7. Hopefully, the next discussion can examine physical exercise on gene expression and various other types of genes that are affected so that it can provide broad insight into the repertoire of knowledge and scientific development in the field of physiology.

Strengths and limitations

The advantage of this systematic review is that it only reviewed randomized controlled trials, which are the most reliable type of scientific data, eliminating the possibility of ambiguous cause-and-effect relationships. Furthermore, we also address the limitations of our study, including the small number of studies reviewed, the lack of protocol

heterogeneity, and the limited review of physiological responses. These are indeed limitations of our research. Therefore, we are interested in conducting experimental studies on this topic in the future to further substantiate this. Furthermore, the limited discussion and debate surrounding physiological research demonstrating that physical exercise increases SIRT1 and the underlying mechanisms is a challenge we faced. To improve our understanding and knowledge of the impact of physical exercise on increasing SIRT1 and the theoretical and scientific explanation of the underlying mechanisms, this study is considered crucial.

Conclusion

This review supports that physical exercise can increase SIRT1 expression in an effort to influence increased biogenesis in mitochondria, which will have a positive and beneficial impact on human health.

Conflict of interests

The authors declared no conflict of interest.

Funding source

The authors did not receive any source of funds.

Data sharing statement

Supplementary data can be shared with the corresponding author upon reasonable request.

REFERENCES

- Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. *Int J Mol Sci.* 2019;20(13):3153. doi: 10.3390/ijms20133153.
- Aird TP, Farquharson AJ, Bermingham KM, O'Sulllivan A, Drew JE, Carson BP. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training. *Am J Physiol Endocrinol Metab*. 2021;321(6):E802-E820. doi: 10.1152/ajpendo.00265.2021.
- 3. Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. *Sci Rep.* 2023;13(1):14752. doi: 10.1038/s41598-023-38843-x.
- 4. Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, et al. Regulation of SIRT1 and its roles in inflammation. *Front Immunol*. 2022;13:831168. doi: 10.3389/fimmu.2022.831168.
- Musilanga N, Nasib H, Jackson G, Shayo F, Nhanga C, Girukwigomba S, et al. Exploring the prevalence and components of metabolic syndrome in Sub-Saharan African type 2 diabetes mellitus patients: A systematic review and meta-analysis. J Obes. 2024;2024:1240457. doi: 10.1155/2024/1240457.
- Hamid S, Groot W, Pavlova M. Trends in cardiovascular diseases and associated risks in sub-Saharan Africa: a review of the evidence for Ghana, Nigeria, South Africa, Sudan and Tanzania. *Aging Male*. 2019;22(3):169-176. doi: 10.1080/13685538.2019.1582621.
- Amaeshi L, Kalejaiye OO, Olopade OB, Kehinde M. Relationship between hematologic inflammatory markers and glycemic control in type 2 diabetes mellitus patients in a tertiary hospital in Nigeria. *Cureus*. 2024;16(8):e68186. doi: 10.7759/cureus.68186.
- 8. Holmannova D, Borsky P, Andrys C, Kremlacek J, Fiala Z, Parova H, et al. The influence of metabolic syndrome on potential aging biomarkers in participants with metabolic syndrome compared to healthy controls. *Biomedicines*. 2024;12(1):242. doi: 10.3390/biomedicines12010242.

- Chandrasekaran P, Weiskirchen R. The role of obesity in type 2 diabetes mellitus-an overview. *Int J Mol Sci.* 2024;25(3):1882. doi: 10.3390/ijms25031882.
- Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? *Cell Metab*. 2022;34(1):11-20. doi: 10.1016/j.cmet.2021.12.012.
- Li S, Wang P, Wang J, Zhao J, Wang X, Liu T. Effect of mind-body exercise on risk factors for metabolic syndrome including insulin resistance: a meta-analysis. Front Endocrinol (Lausanne). 2024;15:1289254. doi: 10.3389/fendo.2024.1289254.
- Vargas-Ortiz K, Pérez-Vázquez V, Macías-Cervantes MH. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. *Int J Mol Sci.* 2019;20(11):2717. doi: 10.3390/ijms20112717.
- Wang F, Wang X, Liu Y, Zhang Z. Effects of exercise-induced ROS on the pathophysiological functions of skeletal muscle. Oxid Med Cell Longev. 2021;2021:3846122. doi: 10.1155/2021/3846122.
- 14. Sawada Y, Ichikawa H, Ebine N, Minamiyama Y, Alharbi AAD, Iwamoto N, et al. Effects of high-intensity anaerobic exercise on the scavenging activity of various reactive oxygen species and free radicals in athletes. *Nutrients*. 2023;15(1):222. doi: 10.3390/nu15010222.
- Yeh YK, Yen FS, Hwu CM. Diet and exercise are a fundamental part of comprehensive care for type 2 diabetes. *J Diabetes Investig*. 2023;14(8):936-939. doi: 10.1111/jdi.14043.
- Rohnejad B, Monazzami A. Effects of high-intensity intermittent training on some inflammatory and muscle damage indices in overweight middle-aged men. *Apunt Sport Med*. 2023;58:100404. doi: 10.1016/j.apunsm.2023.100404.
- Shamsnia E, Matinhomaee H, Azarbayjani MA, Peeri M, The effect of aerobic exercise on oxidative stress in skeletal muscle tissue: A narrative review. Gene Cell Tissue. 2023;10(4):e131964. doi: 10.5812/gct-131964.
- Suzuki K, Tominaga T, Ruhee RT, Ma S. Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. *Antioxidants (Basel)*. 2020;9(5):401. doi: 10.3390/antiox9050401.
- Thirupathi A, Pinho RA, Ugbolue UC, He Y, Meng Y, Gu Y. Effect of running exercise on oxidative stress biomarkers: A systematic review. *Front Physiol*. 2021;11:610112. doi: 10.3389/fphys.2020.610112.
- Sohouli MH, Eslamian G, Rohani P, Zand H, Guimarães NS. The effect of weight loss therapies on sirtuin 1 regulation: a systematic review and meta-analysis of randomized controlled trials. *BMC Nutr.* 2024;10(1):111. doi: 10.1186/s40795-024-00921-2.
- Cho SY, Chung YS, Yoon HK, Roh HT. Impact of exercise intensity on systemic oxidative stress, inflammatory responses, and sirtuin levels in healthy male volunteers. *Int J Environ Res Public Health*. 2022;19(18):11292. doi: 10.3390/ijerph191811292.
- Ghasemi E, Afzalpour ME, Nayebifar S. Combined highintensity interval training and green tea supplementation enhance metabolic and antioxidant status in response to acute exercise in overweight women. *J Physiol Sci.* 2020;70(1):31. doi: 10.1186/s12576-020-00756-z.
- Potthast AB, Nebl J, Wasserfurth P, Haufe S, Eigendorf J, Hahn A, et al. Impact of nutrition on short-term exercise-induced sirtuin regulation: Vegans differ from omnivores and Lacto-Ovo vegetarians. *Nutrients*. 2020;12(4):1004. doi: 10.3390/nu12041004.
- 24. Amirsasan R, Dolgari R, Vakili J, Effects of Pilates training and turmeric supplementation on sirtuin 1 level and body composition in postmenopausal females with sedentary overweight: A randomized, double-blind, clinical trial. *Zahedan J Res Med Sci.* 2019;21(3):e81620. doi: 10.5812/zjrms.81620.
- Wasserfurth P, Nebl J, Rühling MR, Shammas H, Bednarczyk J, Koehler K, et al. Impact of dietary modifications on plasma sirtuins 1, 3 and 5 in older overweight individuals undergoing 12-weeks of circuit training. *Nutrients*. 2021;13(11):3824. doi: 10.3390/nu13113824.
- Mohammed A, Sadek NB, Mohammed MM, Khowailed EA, Rashed LA. Interplay between exercise and SIRT1 in skeletal muscle of diabetic male rats. *Med J Cairo Univ*. 2019;87:3573-3579. doi: 10.21608/mjcu.2019.69894.
- 27. Shi D, Hao Z, Qi W, Jiang F, Liu K, Shi X. Aerobic exercise combined with chlorogenic acid exerts neuroprotective effects

- and reverses cognitive decline in Alzheimer's disease model mice (APP/PS1) via the SIRT1/ /PGC-1α/PPARγ signaling pathway. *Front Aging Neurosci*. 2023;15:1269952. doi: 10.3389/fnagi.2023.1269952.
- 28. Baskaran R, Balasubramanian B, Ho JH, Wang MF, Abomughaid MM, Yang HS, et al. VH-4-A bioactive peptide from soybean and exercise training constrict hypertension in rats through activating cell survival and AMPKα1, Sirt1, PGC1α, and FoX3α. Molecules. 2022;27(22):7705. doi: 10.3390/molecules27227705.
- Lu Z, Xu Y, Song Y, Bíró I, Gu Y. A mixed comparisons of different intensities and types of physical exercise in patients with diseases related to oxidative stress: A systematic review and network meta-analysis. *Front Physiol*. 2021;12:700055. doi: 10.3389/fphys.2021.700055.
- Kawamura T, Higashida K, Muraoka I. Application of molecular hydrogen as a novel antioxidant in sports science. Oxid Med Cell Longev. 2020;2020:2328768. doi: 10.1155/2020/2328768.
- Sylviana N, Natalia C, Goenawan H, Pratiwi YS, Setiawan I, Tarawan VM, et al. Effect of short-term endurance exercise on COX IV and PGC-1α mRNA expression levels in rat skeletal muscle. *Biomed Pharmacol J.* 2019;12(3). doi: 10.13005/bpj/1759.
- 32. van der Zwaard S, Brocherie F, Jaspers RT. Under the hood: Skeletal muscle determinants of endurance performance. *Front Sports Act Living*. 2021;3:719434. doi: 10.3389/fspor.2021.719434.
- 33. Irawati NAV, Sylviana N, Lubis L. Role of exercise intensity in skeletal muscle hypertrophy. *J Biomedika dan Kesehat*. 2024;7(1):124-132.
- Mcleod JC, Currier BS, Lowisz CV, Phillips SM. The influence of resistance exercise training prescription variables on skeletal muscle mass, strength, and physical function in healthy adults: An umbrella review. *J Sport Health Sci*. 2024;13(1):47-60. doi: 10.1016/j.jshs.2023.06.005.
- Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. *Molecules*. 2023;28(16):5979. doi: 10.3390/molecules28165979.
- Souissi W, Bouzid MA, Farjallah MA, Ben Mahmoud L, Boudaya M, Engel FA, et al. Effect of different running exercise modalities on post-exercise oxidative stress markers in trained athletes. *Int J Environ Res Public Health*. 2020;17(10):3729. doi: 10.3390/ijerph17103729.
- 37. Ye Y, Lin H, Wan M, Qiu P, Xia R, He J, et al. The effects of aerobic exercise on oxidative stress in older adults: A systematic review and meta-analysis. Front Physiol. 2021;12:701151. doi: 10.3389/fphys.2021.701151.
- 38. Kazemi SS, Heidarianpour A, Shokri E. Effect of resistance training and high-intensity interval training on metabolic parameters and serum level of Sirtuin1 in postmenopausal women with metabolic syndrome: a randomized controlled trial. *Lipids Health Dis.* 2023;22(1):177. doi: 10.1186/s12944-023-01940-x.
- Tagliari CFDS, de Oliveira CN, Vogel GM, da Silva PB, Linden R, Lazzaretti RK, et al. Investigation of SIRT1 gene variants in HIV-associated lipodystrophy and metabolic syndrome. *Genet Mol Biol*. 2020;43(1):e20190142. doi: 10.1590/1678-4685-GMB-2019-0142.
- 40. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 2008;11(1):139-150. doi: 10.1089/rej.2007.0576.
- 41. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. *Antioxid Redox Signal*. 2013;18(10):1208-1246. doi:10.1089/ars.2011.4498.
- Jia D, Hou L, Lv Y, Xi L, Tian Z. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. *J Cell Physiol*. 2019;234(12):23705-23718. doi: 10.1002/jcp.28939.

- 43. Ma JK, Scribbans T, Edgett B, Colin Boyd JA, Simpson CP, Little J, et al. Extremely low-volume, high-intensity interval training improves exercise capacity and increases mitochondrial protein content in human skeletal muscle. *Open J Mol Integr Physiol.* 2013;3:202. doi: 10.4236/ojmip.2013.34027.
- Marton O, Koltai E, Nyakas C, Bakonyi T, Zenteno-Savin T, Kumagai S, et al. Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. *Biogerontology*. 2010;11(6):679-686. doi: 10.1007/s10522-010-9279-2.
- 45. Masuki S, Morikawa M, Nose H. High-intensity walking time is a key determinant to increase physical fitness and improve health outcomes after interval walking training in middle-aged and older people. *Mayo Clin Proc.* 2019;94(12):2415-2426. doi: 10.1016/j.mayocp.2019.04.039.
- 46. Tsilogianni Z, Baker JR, Papaporfyriou A, Papaioannou AI, Papathanasiou E, Koulouris NG, et al. Sirtuin 1: Endocan and sestrin 2 in different biological samples in patients with asthma. Does severity make the difference? *J Clin Med.* 2020;9(2):473. doi: 10.3390/jcm9020473.
- 47. Ghasemi E, Nayebifar S. Benefits of 10 weeks of high-intensity interval training and green tea supplementation on cardiovascular risk factors and VO_{2max} in overweight women. *J Res Med Sci.* 2019;24:79. doi: 10.4103/jrms.JRMS 499 18.
- 48. Anderson G, Rodriguez M, Reiter RJ. Multiple sclerosis: Melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut-microbiome-derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells. *Int J Mol Sci.* 2019;20(21):5500. doi: 10.3390/ijms20215500.
- Nebl J, Drabert K, Haufe S, Wasserfurth P, Eigendorf J, Tegtbur U, et al. Exercise-induced oxidative stress, nitric oxide and plasma amino acid profile in recreational runners with vegetarian and non-vegetarian dietary patterns. *Nutrients*. 2019;11(8):1875. doi: 10.3390/nu11081875.
- Lieberman DE, Kistner TM, Richard D, Lee IM, Baggish AL. The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans. *Proc Natl Acad Sci U S A.* 2021;118(50):e2107621118. doi: 10.1073/pnas.2107621118.
- Ferrara L, Joksimovic M, D'Angelo S. Modulation of mitochondrial biogenesis: Action of physical activity and phytochemicals. *J Phys Educ Sport*. 2021;21(1):425-433. doi: 10.7752/jpes.2021.01042.
- Tokumitsu H, Sakagami H. Molecular mechanisms underlying Ca²⁺/Calmodulin-dependent protein kinase kinase signal transduction. *Int J Mol Sci.* 2022;23(19):11025. doi: 10.3390/ijms231911025.
- Jevtovic F. Combination of metformin and exercise in management of metabolic abnormalities observed in type 2 diabetes mellitus. *Diabetes, Metab Syndr Obes.* 2021;14:4043-4057. doi: 10.2147/DMSO.S328694.
- 54. Han Y, Liu Y, Zhang Y, Wang W, Lv T, Huang J, Peng X. The Role and Application of the AMPK-Sirtuins Network in Cellular Senescence. Front Biosci (Landmark Ed). 2023;28(10):250. doi: 10.31083/j.fbl2810250.
- Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. *Cell*. 2020;180(5):984-1001. doi: 10.1016/j.cell.2020.02.008.
- Ulbricht ASSF, de Lima DD, Werlang-Coelho C, Magro DD, Donat B, Vieira MR, et al. Effects of aerobic exercise training on oxidative stress in the skeletal muscles of obese rats. Rev Bras Med do Esporte. 2019;25(5):404-408. doi:10.1590/1517-869220192505184278.
- Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. *Antioxidants (Basel)*. 2023;12(5):1075. doi: 10.3390/antiox12051075.
- Aggarwal R, Potel KN, McFalls EO, Butterick TA, Kelly RF. Novel therapeutic approaches enhance PGC1-alpha to reduce oxidant stress-inflammatory signaling and improve functional recovery in hibernating myocardium. *Antioxidants (Basel)*. 2022;11(11):2155. doi: 10.3390/antiox11112155.