Preparation and Characterization of Apixaban Cocrystals with Coformers for Improving Physical Properties

Authors

  • Basma Yahya Al-Najjar Department of Pharmaceutics, Faculty of Pharmacy, Al-Rafidain University College, Baghdad, Iraq
  • Ishraq Kadhim Abbas Department of Pharmaceutics, Faculty of Pharmacy, Al-Rafidain University College, Baghdad, Iraq https://orcid.org/0000-0003-4709-625X
  • Mowafaq Mohammed Ghareeb Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0002-9968-7396

DOI:

https://doi.org/10.54133/ajms.v7i2.1402

Keywords:

Apixaban, Coformers, Cocrystals, Solubility

Abstract

Background: Cocrystals are stoichiometric, multicomponent crystalline materials composed of an active pharmaceutical ingredient (API) and a coformer arranged in a crystalline structure. Apixaban (APX) is an oral blood thinner that has a low aqueous solubility of 0.028mg/mL at 24 °C and a weak oral bioavailability of about 50% for doses below 10 mg, decreasing as doses above 25 mg are taken. Objectives: To develop and assess APX cocrystal to improve its solubility. Methods: Cocrystals of APX with diverse coformers were synthesized using the solvent evaporation technique in varying molar ratios. The structure of the synthesized cocrystals was validated by DSC, PXRD, and FTIR analyses. Saturation solubility of APX and cocrystals in water was also investigated. Results: APX cocrystals with diverse coformers exhibited distinct physicochemical features. The co-crystal of APX with oxalic acid at a 1:1 ratio exhibited a 2.54-fold enhancement in solubility relative to that of pure APX in water. Each coformer enhanced the solubility of the APX co-crystals. The FTIR spectra of the cocrystals indicated no interaction between the APX and the coformers. The DSC analysis revealed distinct endothermic peaks corresponding to its melting point, indicating the development of cocrystals. The PXRD diffractogram demonstrated fluctuation of 2 theta values of peaks and confirmed cocrystallization of APX. Conclusions: Cocrystallization may serve as a potential method to improve the solubility of APX.

Downloads

Download data is not yet available.

References

Vemuri VD, Lankalapalli S. Insight into concept and progress on pharmaceutical co-crystals: an overview. Indian J Pharm Educ Res. 2019;53(4):522-538. doi: 10.5530/ijper.53.4s.147. DOI: https://doi.org/10.5530/ijper.53.4s.147

Parkes A, Ziaee A, O'Reilly E. Evaluating experimental, knowledge-based and computational cocrystal screening methods to advance drug-drug cocrystal fixed-dose combination development. Eur J Pharm Sci. 2024:106931. doi: 10.1016/j.ejps.2024.106931. DOI: https://doi.org/10.1016/j.ejps.2024.106931

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharmaceutica Sinica B. 2021;11(8):2537-2564. doi: 10.1016/j.apsb.2021.03.030. DOI: https://doi.org/10.1016/j.apsb.2021.03.030

Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, et al. Recent advances in pharmaceutical cocrystals: From bench to market. Front Pharmacol. 2021;12:780582. doi: 10.3389/fphar.2021.780582. DOI: https://doi.org/10.3389/fphar.2021.780582

Mezue K, Obiagwu C, John J, Sharma A, Yang F, Shani J. Novel oral anticoagulants in atrial fibrillation: update on apixaban. Curr Cardiol Rev. 2017;1;13(1):41-46. doi: 10.2174/1573403x12666160720092024. DOI: https://doi.org/10.2174/1573403X12666160720092024

Zheng W, Dai X, Xu B, Tian W, Shi J. Discovery and development of Factor Xa inhibitors (2015–2022). Front Pharmacol 2023;21;14:1105880. doi: 10.3389/fphar.2023.1105880. DOI: https://doi.org/10.3389/fphar.2023.1105880

Jankowski W, Surov SS, Hernandez NE, Rawal A, Battistel M, Freedberg D, et al. Engineering and evaluation of FXa bypassing agents that restore hemostasis following Apixaban associated bleeding. Nat Commun. 2024;15(1):3912. doi: 10.1038/s41467-024-48278-1. DOI: https://doi.org/10.1038/s41467-024-48278-1

Sammut MA, Elamin N, Storey RF. Factor XI and XIa inhibition: A new approach to anticoagulant therapy. Br J Cardiol. 2024;31(2):018. doi: 10.5837/bjc.2024.018. DOI: https://doi.org/10.5837/bjc.2024.018

Buckley BJ, Lane DA, Calvert P, Zhang J, Gent D, Mullins CD, et al. Effectiveness and safety of apixaban in over 3.9 million people with atrial fibrillation: a systematic review and meta-analysis. J Clin Med. 2022;11(13):3788. doi: 10.3390/jcm11133788. DOI: https://doi.org/10.3390/jcm11133788

Naseef H, Kanaze F. Apixaban and clopidogrel in a fixed-dose combination: Formulation and in vitro evaluation. Saudi Pharm J. 2024;32(6):102089. doi: 10.1016/j.jsps.2024.102089. DOI: https://doi.org/10.1016/j.jsps.2024.102089

Feng W, Wang X, Huang D, Lu A. Ranking the efficacy of anticoagulants for the prevention of venous thromboembolism after total hip or knee arthroplasty: A systematic review and a network meta-analysis. Pharmacol Res. 2021;1;166:105438. doi: 1016/j.phrs.2021.105438. DOI: https://doi.org/10.1016/j.phrs.2021.105438

Lassen MR, Gallus A, Raskob GE, Pineo G, Chen D, Ramirez LM. Apixaban versus enoxaparin for thromboprophylaxis after hip replacement. NEJM. 2010;23;363(26):2487-2498. doi: 10.1056/NEJMoa10068. DOI: https://doi.org/10.1056/NEJMoa1006885

Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Hornick P. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): A randomized double-blind trial. Lancet. 2010;6;375(9717):807-815. doi: 10.1016/S0140-6736(09)62125-5. DOI: https://doi.org/10.1016/S0140-6736(09)62125-5

Connolly SJ, Eikelboom J, Joyner C, Diener HC, Hart R, Golitsyn S, et al. Apixaban in patients with atrial fibrillation. NEJM. 2011;3;364(9):806-817. doi: 10.1056/NEJMoa1007432. DOI: https://doi.org/10.1056/NEJMoa1007432

Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. NEJM. 2011;15;365(11):981-992. doi: 10.1056/NEJMoa1107039. DOI: https://doi.org/10.1056/NEJMoa1107039

Malley M, Pommier C, inventors; Bristol Myers Squibb Co, assignee. Crystalline solvates of apixaban. United States patent application: US 11/678,206. 2007 (30). Available at: https://patents.google.com/patent/EP2752414A1/no

Sandoz AG, assignee. Crystalline form of apixaban. European patent application: EU 2752414 A1.09.07. 2014. Available at: https://patentimages.storage.googleapis.com/66/7b/9c/e52058281706c4/EP2752414A1.pdf

Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci. 2006;1;95(3):499-516. doi: 10.1002/jps.20578. DOI: https://doi.org/10.1002/jps.20578

Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;30;59(7):617-630. doi: 10.1016/j.addr.2007.05.011. DOI: https://doi.org/10.1016/j.addr.2007.05.011

Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun. 2016;52(57):8772-8786. doi: 10.1039/x0xx00000x. DOI: https://doi.org/10.1039/C6CC01289B

Morissette SL, Soukasene S, Levinson D, Cima MJ, Almarsson Ö. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc Natl Acad Sci. 2003;4;100(5):2180-2184. doi: 10.1073/pnas.0437744100. DOI: https://doi.org/10.1073/pnas.0437744100

Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, et al. Ritonavir: an extraordinary example of conformational polymorphism. J Pharm Res. 2001;1;18(6):859-866. doi: 10. 1023/A:1011052932607. DOI: https://doi.org/10.1023/A:1011052932607

Wang CC, Chen YL, Lu TC, Lee C, Chang YC, Chan YF, et al. Design and evaluation of oral formulation for apixaban. Heliyon. 2023;1;9(8). doi: 10.1016/j.heliyon.2023.e18422. DOI: https://doi.org/10.1016/j.heliyon.2023.e18422

Du C, Cong Y, Zhang Y, Xue Y, Qiao B, Ye T, et al. Dissolution behavior and thermodynamic properties of apixaban in pure and mixed solvents. JCT. 2019;22:105949. doi: 10.1016/j.jct.2019.105949. DOI: https://doi.org/10.1016/j.jct.2019.105949

Abdulbaqi MR, Rajab NA. Preparation, characterization and ex vivo permeability study of transdermal apixaban O/W nanoemulsion based gel. Iraqi J Pharm Sci. 2020;29(2):214-222. doi: 10.31351/vol29iss2pp214-222.

Zhang L, Kong D, Wang H, Jiao L, Zhao X, Song J, et al. Cocrystal of apixaban–quercetin: Improving solubility and bioavailability of drug combination of two poorly soluble drugs. Molecules. 2021: 3;26(9):2677. doi: 10.3390/molecules26092677.

Asati A V, Salunkhe K S, Chavan MJ. Solubility enhancement of BCS classified IV drug-apixaban by preparation and evaluation of mesoporous nanomatrix. Int J Pharm Sci Res. 2020;11:880-890. doi: 10.26452/ijrps.v11i1.1910. DOI: https://doi.org/10.26452/ijrps.v11i1.1910

Lee J, Lee JJ, Lee S, Dinh L, Oh H, Abuzar SM, et al. Preparation of apixaban solid dispersion for the enhancement of apixaban solubility and permeability. Int J Pharm 2023;15:907. doi: 10.3390/pharmaceutics15030907. DOI: https://doi.org/10.3390/pharmaceutics15030907

Salman ZN, Al-Ani I, Al Azzam KM, Majeed BJ, Abdallah HH, Negim ES. Enhancement of apixaban's solubility and dissolution rate by inclusion complex (β-cyclodextrin and hydroxypropyl β-cyclodextrin) and computational calculation of their inclusion complexes. ADMET. 2023;19;11(4):533-550. doi: 10.5599/admet.1885. DOI: https://doi.org/10.5599/admet.1885

Zhang L, Kong D, Wang H, Jiao L, Zhao X, Song J, et al. Cocrystal of apixaban–quercetin: Improving solubility and bioavailability of drug combination of two poorly soluble drugs. Molecules. 2021;3;26(9):2677. doi: 10.3390/molecules26092677. DOI: https://doi.org/10.3390/molecules26092677

Jassim ZE, Al-Kinani KK, Alwan ZS. Preparation and evaluation of pharmaceutical cocrystals for solubility enhancement of dextromethorphan HBr. Iraqi J Pharm Sci. 2020;29(2). doi: 10.31351/vol29iss2pp214-222. DOI: https://doi.org/10.31351/vol29iss2pp214-222

Annisa V, Sulaiman TN, Nugroho AK, Nugroho AE. Determination of saturated ketoconazole solubility using spectrophotometry Uv-Vis method. RJPT. 2022;15(10):4795-800. doi: 10.52711/0974-360X.2022.00805. DOI: https://doi.org/10.52711/0974-360X.2022.00805

Parveen S, Singh RP, Rathore G. Formulation, evaluation and bioequivalence studies of apixaban tablet. AP. 2024; 13(1): 896-906. doi: 10.54085/ap.2024.13.1.96. DOI: https://doi.org/10.54085/ap.2024.13.1.96

Fotaki N, Brown W, Kochling J, Chokshi H, Miao H, Tang K, et al. Rationale for selection of dissolution media: three case studies. Dissolut. Technol. 2013;20(3):6-13. doi: 10.14227/DT200313P6 DOI: https://doi.org/10.14227/DT200313p6

Chen Y, Li L, Yao J, Ma YY, Chen JM, Lu TB. Improving the solubility and bioavailability of apixaban via apixaban–oxalic acid cocrystal. Cryst Growth Des. 2016;4;16(5):2923-2930. doi: 10.1021/acs.cgd.6b00266. DOI: https://doi.org/10.1021/acs.cgd.6b00266

Wesolowski M. DSC of low molecular mass organic materials and pharmaceuticals. In: Joseph D. Menczel, Janusz Grebowicz (Eds.), The Handbook of Differential Scanning Calorimetry, (1st ed.) Butterworth-Heinemann; 2023. pp. 485-658. DOI: https://doi.org/10.1016/B978-0-12-811347-9.00004-7

Eccles KS, Elcoate CJ, Stokes SP, Maguire AR, Lawrence SE. Sulfoxides: potent co-crystal formers. Cryst Growth Des. 2010;6;10(10):4243-4245. doi: abs/10.1021/cg1010192. DOI: https://doi.org/10.1021/cg1010192

Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Prog Cryst Growth Charact. 2016;1;62(3):1-8. doi: 10.1016/j.pcrysgrow.2016.07.001. DOI: https://doi.org/10.1016/j.pcrysgrow.2016.07.001

Singh M, Barua H, Jyothi VG, Dhondale MR, Nambiar AG, Agrawal AK, et al. Cocrystals by design: a rational coformer selection approach for tackling the API problems. Pharmaceutics. 2023;15(4):1161. doi: 10.3390/pharmaceutics15041161. DOI: https://doi.org/10.3390/pharmaceutics15041161

Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 2012;12(5):2147-2152. doi: 10.1021/cg3002948. | DOI: https://doi.org/10.1021/cg3002948

Lin HL, Zhang GC, Lin SY. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy. J Therm Anal Calorim. 2015;120:679-687. doi: 10.1007/s10973-014-3787-2. DOI: https://doi.org/10.1007/s10973-014-3787-2

Shane NL, Chamle AH, Pai G, Sathyanarayana MB. Fabrication and solid-state characterization of ticagrelor co-crystals with improved solubility and dissolution. Int J Pharm Qual. 2017;8(01):1-8. doi: 10.25258/ijpqa.v8i1.8433. DOI: https://doi.org/10.25258/ijpqa.v8i1.8433

Madan JR, Waghmare SV, Patil RB, Awasthi R, Dua K. Cocrystals of apixaban with improved solubility and permeability: formulation, physicochemical characterization, pharmacokinetic evaluation, and computational studies. Assay Drug Dev Technol. 2021;19(2):124-138. doi: 10.1089/adt.2020.1052. DOI: https://doi.org/10.1089/adt.2020.1052

Downloads

Published

2024-11-29

How to Cite

Al-Najjar, B. Y., Abbas, I. K., & Ghareeb, M. M. (2024). Preparation and Characterization of Apixaban Cocrystals with Coformers for Improving Physical Properties . Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 7(2), 120–126. https://doi.org/10.54133/ajms.v7i2.1402

Issue

Section

Original article

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.