Galectin-3, Matrix Metalloproteinase-3 and TLR-2 Receptor as Novel Biomarkers in the Diagnosis of Rheumatoid Arthritis

Authors

DOI:

https://doi.org/10.54133/ajms.v7i1.1097

Keywords:

Galectin-3, Matrix metalloproteinase-3, TLR2, Rheumatoid arthritis

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that activates arthritogenic immune responses, along with many of the systemic inflammatory cascades that result in synovitis and the progressive irreversible destruction of affected joints. Studies have demonstrated the pathogenic role of some biomolecules and autoantibodies in RA disease. Some other markers, like erythrocyte sedimentation rate (ESR), acute phase reactant protein (CRP), and rheumatoid factor (RF), have also been used successfully to diagnose and treat RA. These are the anticyclic citrullinated peptide (ACPA) autoantibody, tumor necrosis factor-alpha (TNFα), and interleukin 1 and 6 (IL-1, IL-6). Many others are still under study. In this review, we focused on a few biomolecules that could either directly or indirectly contribute to the pathogenesis of RA, aiming to demonstrate their diagnostic characteristics and capacity to forecast the disease. These are Galectin-3 (Gal-3), matrix metalloproteinase-3 (MMP-3) and toll-like receptor 2 (TLR-2). After reviewing peer-reviewed studies from 24 years ago, we concluded that these markers could potentially serve as prognostic factors for RA disease activity in the future and have reasonable diagnostic power. We believe that combining these markers with traditional ones could enhance the accuracy and clarity of clinical diagnosis, as well as track the effectiveness of current therapies.

Downloads

Download data is not yet available.

References

Faiq MK, Kadhim DJ, Gorial FI. Belief about medicines among a sample of Iraqi patients with rheumatoid arthritis. Iraqi J Pharm Sci. 2019;28:134–141. doi: 10.31351/vol28iss2pp134-141. DOI: https://doi.org/10.31351/vol28iss2pp134-141

Ezat SE, Mahmood MR, Gorial FI. Diagnostic and predictive utility of serum interleukin-37 in rheumatoid arthritis: A case-control study. Al-Rafidain J Med Sci. 2021;1:97–101. doi: 10.54133/ajms.v1i.39. DOI: https://doi.org/10.54133/ajms.v1i.39

Anyfanti P, Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Dolgyras P, Galanopoulou V, et al. Association of galectin-3 with markers of myocardial function, atherosclerosis, and vascular fibrosis in patients with rheumatoid arthritis. Clin Cardiol. 2019;42:62–68. doi: 10.1002/clc.23105. DOI: https://doi.org/10.1002/clc.23105

Tseng CC, Chen YJ, Chang WA, Tsai WC, Ou TT, Wu CC, et al. Dual role of chondrocytes in rheumatoid arthritis: The chicken and the egg. Int J Mol Sci. 2020;21(3):1071. doi: 10.3390/ijms21031071. DOI: https://doi.org/10.3390/ijms21031071

Khorasani S, Boroumand N, Ghaeni Pasavei A, Sahebari M, Hashemy SI. A Study on association between protein carbonyl and anti-cyclic citrullinated peptide antibody in rheumatoid arthritis: Introducing a new supplementary biomarker. Ind J Clin Biochem. 2020;35:347–352. doi: 10.1007/s12291-019-00823-2. DOI: https://doi.org/10.1007/s12291-019-00823-2

Liu C, Yan Z, Zhang X, Xia T, Ashaolu JO, Olatunji OJ, et al. Food-derived bioactive peptides potentiating therapeutic intervention in rheumatoid arthritis. Heliyon. 2024;10(10):e31104. doi: 10.1016/j.heliyon.2024.e31104. DOI: https://doi.org/10.1016/j.heliyon.2024.e31104

Mohammed NUG, Khaleel FM, Gorial FI. Cystatin D as a new diagnostic marker in rheumatoid arthritis. Gene Rep. 2021;23:101027. doi: 10.1016/j.genrep.2021.101027. DOI: https://doi.org/10.1016/j.genrep.2021.101027

Pekdiker M, Oğuzman H. The first involved joints and associated factors in patients with rheumatoid arthritis. Arch Rheumatol. 2024;39:274–284. doi: 10.46497/ArchRheumatol.2024.10417. DOI: https://doi.org/10.46497/ArchRheumatol.2024.10417

Mohammed SI, Zalzala MH, Gorial FI. The effect of TNF-alpha gene polymorphisms At -376 G/A, -806 C/T, and -1031 T/C on the likelihood of becoming a non-responder to etanercept in a sample of Iraqi rheumatoid arthritis patients. Iraqi J Pharm Sci. 2022;31:113–128. doi: 10.31351/vol31iss2pp113-128. DOI: https://doi.org/10.31351/vol31iss2pp113-128

Gorial FI, Naema SJ, Ali HO, Hussain SA. The influence of rheumatoid arthritis on work productivity among a sample of Iraqi patients. Al-Rafidain J Med Sci. 2021;1:110–117. doi: 10.54133/ajms.v1i.47. DOI: https://doi.org/10.54133/ajms.v1i.47

Xie Z, Hou H, Luo D, An R, Zhao Y, Qiu C. ROS-dependent lipid peroxidation and reliant antioxidant ferroptosis-suppressor-protein 1 in rheumatoid arthritis: A covert clue for potential therapy. Inflammation. 2021;44:35–47. doi: 10.1007/s10753-020-01338-2. DOI: https://doi.org/10.1007/s10753-020-01338-2

Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020;9(4):880. doi: 10.3390/CELLS9040880. DOI: https://doi.org/10.3390/cells9040880

Zamudio-Cuevas Y, Martínez-Flores K, Martínez-Nava GA, Clavijo-Cornejo D, Fernández-Torres J, Sánchez-Sánchez R. Rheumatoid arthritis and oxidative stress, a review of a decade. Cell Mol Biol. 2022;68:174–184. doi: 10.14715/cmb/2022.68.6.28. DOI: https://doi.org/10.14715/cmb/2022.68.6.28

Mohammed NUG, Khaleel FM, Gorial FI. The role of serum chitinase-3-like 1 protein (YKL-40) level and its correlation with proinflammatory cytokine in patients with rheumatoid arthritis. Baghdad Sci J. 2022;19:1014–1020. doi: 10.21123/bsj.2022.6293. DOI: https://doi.org/10.21123/bsj.2022.6293

Oleiwi AR, Zgair AK. Estimation levels of CTHRC1and some cytokines in Iraqi patients with rheumatoid arthritis. Baghdad Sci J. 2023;20:928–936. doi: 10.21123/bsj.2023.8036. DOI: https://doi.org/10.21123/bsj.2023.8036

Al Ghuraibawi ZAG, Sharquie IK, Gorial FI. A novel link of serum IL-39 levels in patients with rheumatoid arthritis. Iraqi J Sci. 2023;64:1651–1661. doi: 10.24996/ijs.2023.64.4.8. DOI: https://doi.org/10.24996/ijs.2023.64.4.8

Panga V, Kallor AA, Nair A, Harshan S, Raghunathan S. Mitochondrial dysfunction in rheumatoid arthritis: A comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data. PLoS One. 2019;14(11):e0224632. doi: 10.1371/journal.pone.0224632. DOI: https://doi.org/10.1371/journal.pone.0224632

Li Y, Khan MS, Akhter F, Husain FM, Ahmad S, Chen L. The non-enzymatic glycation of LDL proteins results in biochemical alterations - A correlation study of Apo B100-AGE with obesity and rheumatoid arthritis. Int J Biol Macromol. 2019;122:195–200. doi: 10.1016/j.ijbiomac.2018.09.107. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.107

Tarannum A, Arif Z, Alam K, Ahmad S, Uddin M. Nitroxidized-albumin advanced glycation end product and rheumatoid arthritis. Arch Rheumatol. 2019;34:461–475. doi: 10.5606/ArchRheumatol.2019.7285. DOI: https://doi.org/10.5606/ArchRheumatol.2019.7285

Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021;44:172–182. doi: 10.1016/j.bj.2020.06.010. DOI: https://doi.org/10.1016/j.bj.2020.06.010

Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, et al. The role of reactive oxygen species in the rheumatoid arthritis-associated synovial microenvironment. Antioxidants. 2022;11(6):1153. doi: 10.3390/antiox11061153. DOI: https://doi.org/10.3390/antiox11061153

Cai Y, Zhang J, Liang J, Xiao M, Zhang G, Jing Z, et al. The burden of rheumatoid arthritis: Findings from the 2019 Global Burden of Diseases Study and Forecasts for 2030 by Bayesian Age-Period-Cohort Analysis. J Clin Med. 2023;12(4):1291. doi: 10.3390/jcm12041291. DOI: https://doi.org/10.3390/jcm12041291

Piramoon S, Tahoori MT, Owlia MB, Royaei MR. PRP as a modulator of inflammation in FLS of RA patients by regulation of galectins and TGF-β1. Heliyon. 2024;10(1). doi: 10.1016/j.heliyon.2024.e24036. DOI: https://doi.org/10.1016/j.heliyon.2024.e24036

Karami J, Aslani S, Jamshidi A, Garshasbi M, Mahmoudi M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene. 2019;702:8–16. doi: 10.1016/j.gene.2019.03.033. DOI: https://doi.org/10.1016/j.gene.2019.03.033

Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis. J Autoimmun. 2020;110:102400. doi: 10.1016/j.jaut.2019.102400j. DOI: https://doi.org/10.1016/j.jaut.2019.102400

Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018;320:1360–1372. doi: 10.1001/jama.2018.13103. DOI: https://doi.org/10.1001/jama.2018.13103

Demoruelle MK, Wilson TM, Deane KD. Lung inflammation in the pathogenesis of rheumatoid arthritis. Immunol Rev. 2020; 294:124–132. doi: 10.1111/imr.12842. DOI: https://doi.org/10.1111/imr.12842

Gravallese EM, Firestein GS. Rheumatoid arthritis — Common origins, divergent mechanisms. N Engl J Med. 2023;388:529–542. doi: 10.1056/nejmra2103726. DOI: https://doi.org/10.1056/NEJMra2103726

Niu X, Chen G. Clinical biomarkers and pathogenic-related cytokines in rheumatoid arthritis. J Immunol Res. 2014;2014:698192. doi: 10.1155/2014/698192. DOI: https://doi.org/10.1155/2014/698192

Koper-Lenkiewicz OM, Sutkowska K, Wawrusiewicz-Kurylonek N, Kowalewska E, Matowicka-Karna J. Proinflammatory cytokines (IL-1,-6,-8,-15,-17,-18,-23, TNF-α) single nucleotide polymorphisms in rheumatoid arthritis—A literature review. Int J Mol Sci. 2022;23. doi: 10.3390/ijms23042106. DOI: https://doi.org/10.3390/ijms23042106

Van Der Heijde D, Van Der Helm-Van Mil AHM, Aletaha D, Bingham CO, Burmester GR, Dougados M, et al. EULAR definition of erosive disease in light of the 2010 ACR/EULAR rheumatoid arthritis classification criteria. Ann Rheum Dis. 2013;72(4):479-481. doi: 10.1136/annrheumdis-2012-202779. DOI: https://doi.org/10.1136/annrheumdis-2012-202779

Taylor PC. Update on the diagnosis and management of early rheumatoid arthritis. Clin Med. 2020; 20:561–564. doi: 10.7861/clinmed.2020-0727. DOI: https://doi.org/10.7861/clinmed.2020-0727

Dissanayake K, Jayasinghe C, Wanigasekara P, Dissanayake J, Sominanda A. Validity of clinical disease activity index (CDAI) to evaluate the disease activity of rheumatoid arthritis patients in Sri Lanka: A prospective follow up study based on newly diagnosed patients. PLoS One. 2022;17(11):e0278285. doi: 10.1371/journal.pone.0278285. DOI: https://doi.org/10.1371/journal.pone.0278285

Koh JH, Lee Y, Kim HA, Kim J, Shin K. Comparison of remission criteria in patients with rheumatoid arthritis treated with biologic or targeted synthetic disease-modifying anti-rheumatic drugs: results from a nationwide registry. Ther Adv Musculoskelet Dis. 2022;14. doi: 10.1177/1759720X221096363. DOI: https://doi.org/10.1177/1759720X221096363

Movahedi M, Cesta A, Li X, Bombardier C, Wilkinson S, Thorne C, et al. Disease activity trajectories for early and established rheumatoid arthritis: Real-world data from a rheumatoid arthritis cohort. PLoS One. 2022;17(9):e0274264. doi: 10.1371/journal.pone.0274264. DOI: https://doi.org/10.1371/journal.pone.0274264

Ghosh A, Ghosh B, Pain S, Pande A, Saha S, Banerjee A, et al. Comparison between DAS28, CDAI and HAQ-DI as tools to monitor early rheumatoid arthritis patients in eastern India. Indian J Rheumatol. 2011;6:116–122. doi: 10.1016/S0973-3698(11)60073-3. DOI: https://doi.org/10.1016/S0973-3698(11)60073-3

Ma MHY, Ma MHY, Ma MHY, Defranoux N, Defranoux N, Li W, et al. A multi-biomarker disease activity score can predict sustained remission in rheumatoid arthritis. Arthritis Res Ther. 2020;22:1-12. doi: 10.1186/s13075-020-02240-w. DOI: https://doi.org/10.1186/s13075-020-02240-w

Johnson TM, Register KA, Schmidt CM, O’Dell JR, Mikuls TR, Michaud K, et al. Correlation of the multi-biomarker disease activity score with rheumatoid arthritis disease activity measures: A systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2019;71:1459–1472. doi: 10.1002/acr.23785. DOI: https://doi.org/10.1002/acr.23785

Al-Ewaidat OA, Naffaa MM. Stroke risk in rheumatoid arthritis patients: exploring connections and implications for patient care. Clin Exp Med. 2024;24(1):30. doi: 10.1007/s10238-023-01288-7. DOI: https://doi.org/10.1007/s10238-023-01288-7

Luedders BA, Johnson TM, Sayles H, Thiele GM, Mikuls TR, O’Dell JR, et al. Predictive ability, validity, and responsiveness of the multi-biomarker disease activity score in patients with rheumatoid arthritis initiating methotrexate. Semin Arthritis Rheum. 2020;50:1058–1063. doi: 10.1016/j.semarthrit.2020.05.019. DOI: https://doi.org/10.1016/j.semarthrit.2020.05.019

Fleischmann R. Value of the multibiomarker disease activity score to predict remission in RA: What does the evidence show? J Rheumatol. 2019;46:443–446. doi: 10.3899/jrheum.181061. DOI: https://doi.org/10.3899/jrheum.181061

Krishna A, Garg S, Gupta S, Bansal H. C-reactive protein (Crp) and erythrocyte sedimentation rate (esr) trends following total hip and knee arthroplasties in an Indian population – a prospective study. Malays Orthoped J. 2021;15:143–150. doi: 10.5704/MOJ.2107.021. DOI: https://doi.org/10.5704/MOJ.2107.021

Lapić I, Padoan A, Bozzato D, Plebani M. Erythrocyte sedimentation rate and c-reactive protein in acute inflammation: Meta-analysis of diagnostic accuracy studies. Am J Clin Pathol. 2020;153:14–29. doi: 10.1093/ajcp/aqz142. DOI: https://doi.org/10.1093/ajcp/aqz142

Alende-Castro V, Alonso-Sampedro M, Fernández-Merino C, Sánchez-Castro J, Sopeña B, Gude F, et al. C-reactive protein versus erythrocyte sedimentation rate: Implications among patients with no known inflammatory conditions. J Am Board Fam Med. 2021;34:974–983. doi: 10.3122/JABFM.2021.05.210072. DOI: https://doi.org/10.3122/jabfm.2021.05.210072

Litao MKS, Kamat D. Erythrocyte sedimentation rate and C-reactive protein: How best to use them in clinical practice. Pediatr Ann. 2014;43:417–420. doi: 10.3928/00904481-20140924-10. DOI: https://doi.org/10.3928/00904481-20140924-10

Schapkaitz E, RabuRabu S, Engelbrecht M. Differences in erythrocyte sedimentation rates using a modified Westergren method and an alternate method. J Clin Lab Anal. 2019;33(2):e22661. doi: 10.1002/jcla.22661. DOI: https://doi.org/10.1002/jcla.22661

Inoue E, Yamanaka H, Hara M, Tomatsu T, Kamatani N. Comparison of disease activity score (DAS)28- erythrocyte sedimentation rate and DAS28- C-reactive protein threshold values. Ann Rheum Dis. 2007;66:407–409. doi: 10.1136/ARD.2006.054205. DOI: https://doi.org/10.1136/ard.2006.054205

Laurent L, Anquetil F, Clavel C, Ndongo-Thiam N, Offer G, Miossec P, et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74(7):1425-1431. doi: 10.1136/annrheumdis-2013-204543. DOI: https://doi.org/10.1136/annrheumdis-2013-204543

Motta F, Bizzaro N, Giavarina D, Franceschini F, Infantino M, Palterer B, et al. Rheumatoid factor isotypes in rheumatoid arthritis diagnosis and prognosis: A systematic review and meta-analysis. RMD Open. 2023;9(3):e002817. doi: 10.1136/rmdopen-2022-002817. DOI: https://doi.org/10.1136/rmdopen-2022-002817

Wu CY, Yang HY, Luo SF, Lai JH. From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int J Mol Sci. 2021;22:1–18. doi: 10.3390/ijms22020686. DOI: https://doi.org/10.3390/ijms22020686

Kolarz B, Podgorska D, Podgorski R. Insights of rheumatoid arthritis biomarkers. Biomarkers. 2021;26:185–195. doi: 10.1080/1354750X.2020.1794043. DOI: https://doi.org/10.1080/1354750X.2020.1794043

Batsalova T, Teneva I, Bardarov K, Moten D, Dzhambazov B. Anticitrullinated antibodies recognize rheumatoid arthritis associated T-cell epitopes modified by bacterial L-asparaginase. Cen Eur J Immunol. 2023;48:1–15. doi: 10.5114/ceji.2023.131455. DOI: https://doi.org/10.5114/ceji.2023.131455

Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-mediated carbamylation as a hapten model applied to the origin of antibodies to modified proteins in rheumatoid arthritis. Antioxid. Redox Signal. 2022;36:389–409. : doi.org/10.1089/ars.2021.0064. DOI: https://doi.org/10.1089/ars.2021.0064

Ciesielski O, Biesiekierska M, Panthu B, Soszyński M, Pirola L, Balcerczyk A. Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci. 2022;79(2):94. doi: 10.1007/s00018-022-04126-3. DOI: https://doi.org/10.1007/s00018-022-04126-3

Radu AF, Bungau SG. Management of rheumatoid arthritis: An overview. Cells. 2021;10(11):2857. doi: 10.3390/cells10112857. DOI: https://doi.org/10.3390/cells10112857

Finckh A, Courvoisier D, Lamacchia C. Measuring ACPA in the general population or primary care: Is it useful? RMD Open. 2020;6(1):e001085. doi: 10.1136/rmdopen-2019-001085. DOI: https://doi.org/10.1136/rmdopen-2019-001085

Harnanik T, Prihartono S, Juliandhy T. Hyperbaric oxygen in animal model of rheumatoid arthritis: Analysis of HIF-1α, ACPA and IL-17a. Infect Dis Rep. 2020;12 (s1):8766. doi: 10.4081/idr.2020.8766. DOI: https://doi.org/10.4081/idr.2020.8766

Steiner G, Van Hoovels L, Csige D, Gatto M, Iagnocco A, Szekanecz Z. Should ACR/EULAR criteria be revised changing the RF and ACPA scores? Autoimmun Rev. 2024;23:103421. doi: 10.1016/j.autrev.2023.103421. DOI: https://doi.org/10.1016/j.autrev.2023.103421

Hassoon HJ, Jasim WE, Hassan Abbas AA. The evaluation of some biomarkers according to rheumatoid factor in early diagnosis of rheumatoid arthritis patients in Baghdad city. Iraqi J Sci. 2020;61:2196–2203. doi: 10.24996/ijs.2020.61.9.6. DOI: https://doi.org/10.24996/ijs.2020.61.9.6

Aggarwal R, Liao K, Nair R, Ringold S, Costenbader KH. Anti-citrullinated peptide antibody assays and their role in the diagnosis of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2009;61:1472–1483. doi.org/10.1002/art.24827. DOI: https://doi.org/10.1002/art.24827

Osman MEM, Osman RSH, Elmubarak SAA, Dirar AI, Konozy EHE. Phoenix dactylifera (date palm; Arecaceae) putative lectin homologs: Genome-wide search, architecture analysis, and evolutionary relationship. Saudi J Biol Sci. 2023;30(6):103676. doi: 10.1016/j.sjbs.2023.103676. DOI: https://doi.org/10.1016/j.sjbs.2023.103676

Dumic J, Dabelic S, Flögel M. Galectin-3: An open-ended story. Biochim Biophys Acta Gen. 2006;1760:616–635. doi: 10.1016/j.bbagen.2005.12.020. DOI: https://doi.org/10.1016/j.bbagen.2005.12.020

Radhakrishnan A, Chellapandian H, Ramasamy P, Jeyachandran S. Back2 Basics: animal lectins: an insight into a highly versatile recognition protein. J Proteins Proteom. 2023:14(1):43-59. doi: 10.1007/s42485-022-00102-4. DOI: https://doi.org/10.1007/s42485-022-00102-4

Mendez-Huergo SP, Hockl PF, Stupirski JC, Maller SM, Morosi LG, Pinto NA, et al. Clinical relevance of galectin-1 and galectin-3 in rheumatoid arthritis patients: Differential regulation and correlation with disease activity. Front Immunol. 2019;9:3057. doi: 10.3389/fimmu.2018.03057. DOI: https://doi.org/10.3389/fimmu.2018.03057

Salamanna F, Veronesi F, Frizziero A, Fini M. Role and translational implication of galectins in arthritis pathophysiology and treatment: A systematic literature review. J Cell Physiol. 2019;234:1588–1605. doi: 10.1002/JCP.27026. DOI: https://doi.org/10.1002/jcp.27026

Li J, Wang X, Wang Q, Hu Y, Wang S, Xu J, et al. Galectin from Trichinella spiralis alleviates DSS-induced colitis in mice by regulating the intestinal microbiota. Vet Res. 2024;55:3. doi: 10.1186/s13567-023-01262-x. DOI: https://doi.org/10.1186/s13567-023-01262-x

Arad U, Madar-Balakirski N, Angel-Korman A, Amir S, Tzadok S, Segal O, et al. Galectin-3 is a sensor-regulator of toll-like receptor pathways in synovial fibroblasts. Cytokine. 2015;73:30–35. doi: 10.1016/j.cyto.2015.01.016. DOI: https://doi.org/10.1016/j.cyto.2015.01.016

Christopher D, Koehn YY. Galectins in the pathogenesis of rheumatoid arthritis. J Clin Cell Immunol. 2013;04(5). doi: 10.4172/2155-9899.1000164. DOI: https://doi.org/10.4172/2155-9899.1000164

Stegmayr J, Zetterberg F, Carlsson MC, Huang X, Sharma G, Kahl-Knutson B, et al. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci Rep. 2019;9(1):2186. doi: 10.1038/s41598-019-38497-8. DOI: https://doi.org/10.1038/s41598-019-38497-8

Dong R, Zhang M, Hu Q, Zheng S, Soh A, Zheng Y, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med. 2018;41:599–614. doi: 10.3892/ijmm.2017.3311. DOI: https://doi.org/10.3892/ijmm.2017.3311

Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther. 2020;5(1):201. doi: 10.1038/s41392-020-00303-7. DOI: https://doi.org/10.1038/s41392-020-00303-7

Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, et al. Galectin-3: One molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 2018;19(2):379. doi: 10.3390/ijms19020379. DOI: https://doi.org/10.3390/ijms19020379

Chen SC, Kuo PL. The role of galectin-3 in the kidneys. Int J Mol Sci. 2016;17(4):565. doi: 10.3390/ijms17040565. DOI: https://doi.org/10.3390/ijms17040565

Nussdorf A, Park E, Amigues I, Geraldino-Pardilla L, Bokhari S, Giles JT, et al. Associations of galectin-3 levels with measures of vascular disease in patients with rheumatoid arthritis. Semin Arthritis Rheum. 2024;65:152357. doi: 10.1016/j.semarthrit.2023.152357. DOI: https://doi.org/10.1016/j.semarthrit.2023.152357

Epçaçan S, Ramoğlu MG, Epçaçan ZK, Baskın AK. Assessment of serum galectin-3 levels in acute rheumatic fever. Turk J Pediatr. 2022;64:1050–1057. doi: 10.24953/turkjped.2022.79. DOI: https://doi.org/10.24953/turkjped.2022.79

Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 2009;60:1604–1614. doi: 10.1002/art.24574. DOI: https://doi.org/10.1002/art.24574

Gruszewska E, Cylwik B, Gińdzieńska-Sieśkiewicz E, Kowal-Bielecka O, Mroczko B, Chrostek L. Diagnostic power of galectin-3 in rheumatic diseases. J Clin Med. 2020;9:1–9. doi: 10.3390/jcm9103312. DOI: https://doi.org/10.3390/jcm9103312

Pedersen K, Nielsen MA, Juul-Madsen K, Hvid M, Deleuran B, Greisen SR. Galectin-3 interacts with PD-1 and counteracts the PD-1 pathway-driven regulation of T cell and osteoclast activity in Rheumatoid Arthritis. Scand J Immunol. 2023;97(2):e13245. doi: 10.1111/sji.13245. DOI: https://doi.org/10.1111/sji.13245

Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol. 2021;361:104287. doi: 10.1016/j.cellimm.2021.104287. DOI: https://doi.org/10.1016/j.cellimm.2021.104287

Hara A, Niwa M, Noguchi K, Kanayama T, Niwa A, Matsuo M, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules. 2020;10(3):389. doi: 10.3390/biom10030389. DOI: https://doi.org/10.3390/biom10030389

Fujita Y, Asano T, Matsuoka N, Temmoku J, Sato S, Matsumoto H, et al. Differential regulation and correlation between galectin-9 and anti-CCP antibody (ACPA) in rheumatoid arthritis patients. Arthritis Res Ther. 2020;22:1-9. doi: 10.1186/s13075-020-02158-3. DOI: https://doi.org/10.1186/s13075-020-02158-3

Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, Klinzing S, et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum. 2003;48:2788–2795. doi: 10.1002/art.11287. DOI: https://doi.org/10.1002/art.11287

Issa SF, Christensen AF, Lottenburger T, Junker K, Lindegaard H, Hørslev-Petersen K, et al. Within-day variation and influence of physical exercise on circulating Galectin-3 in patients with rheumatoid arthritis and healthy individuals. Scand J Immunol. 2015;82:70–75. doi: 10.1111/sji.12301. DOI: https://doi.org/10.1111/sji.12301

Issa SF, Duer A, Østergaard M, Hørslev-Petersen K, Hetland ML, Hansen MS, et al. Increased galectin-3 may serve as a serologic signature of pre-rheumatoid arthritis while markers of synovitis and cartilage do not differ between early undifferentiated arthritis subsets. Arthritis Res Ther. 2017;19:1-10 doi: 10.1186/s13075-017-1282-4. DOI: https://doi.org/10.1186/s13075-017-1282-4

Abdel Baki NM, Elgengehy FT, Zahran AM, Ghoniem S, Elsayed E, Medhat A, et al. Galectin-3 and interleukin-7 as potential serologic markers in rheumatoid arthritis patients. Egypt. Rheumatol. 2022;44:319–324. doi: 10.1016/j.ejr.2022.04.003. DOI: https://doi.org/10.1016/j.ejr.2022.04.003

Amer AS, Soliman AF, Fahem MMH, AL-Tabbakh SM, Hussein SA. Galectin-3 and its correlation with carotid ultrasound in rheumatoid arthritis patients. Egypt Rheumatol Rehabil. 2023;50(1):63. doi: 10.1186/s43166-023-00228-3. DOI: https://doi.org/10.1186/s43166-023-00228-3

Araki Y, Mimura T. Matrix metalloproteinase gene activation resulting from disordred epigenetic mechanisms in rheumatoid arthritis. Int J Mol Sci. 2017;18(5):905. doi: 10.3390/ijms18050905. DOI: https://doi.org/10.3390/ijms18050905

Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis. 2000;59:455–461. doi: 10.1136/ard.59.6.455. DOI: https://doi.org/10.1136/ard.59.6.455

Mohammed NUG, Gorial FI, Khaleel FM, Abed BA, Ali Mutar S, Farhan LO, et al. Role of human β-defensin-3 in rheumatoid arthritis: An observational single-center study. Al-Rafidain J Med Sci. 2023;5: S71–75. doi: 10.54133/ajms.v5i1S.289. DOI: https://doi.org/10.54133/ajms.v5i1S.289

Itoh Y. Metalloproteinases in rheumatoid arthritis: Potential therapeutic targets to improve current therapies. Prog Mol Biol Transl Sci. 2017;148:327-338. doi: 10.1016/bs.pmbts.2017.03.002. DOI: https://doi.org/10.1016/bs.pmbts.2017.03.002

Nachvak SM, Alipour B, Mahdavi AM, Aghdashi MA, Abdollahzad H, Pasdar Y, et al. Effects of coenzyme Q10 supplementation on matrix metalloproteinases and DAS-28 in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Clin Rheumatol. 2019;38:3367–3374. doi: 10.1007/s10067-019-04723-x. DOI: https://doi.org/10.1007/s10067-019-04723-x

Alghulami OM, Jasim GA, Jasim SY. Effect of docetaxel on matrix metalloproteinase 1 expression in Freund’s adjuvant induced arthritis. Iraqi J Pharm Sci. 2024;33:163–171. doi: 10.31351/VOL33ISS1PP163-171. DOI: https://doi.org/10.31351/vol33iss1pp163-171

Li RL, Duan HX, Liang Q, Huang YL, Wang LY, Zhang Q, et al. Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis. Front Immunol. 2022;13:1046810. doi: 10.3389/fimmu.2022.1046810. DOI: https://doi.org/10.3389/fimmu.2022.1046810

Alamgeer, Hasan UH, Uttra AM, Qasim S, Ikram J, Saleem M, et al. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. Phytomedicine. 2020;66:153134. doi: 10.1016/j.phymed.2019.153134. DOI: https://doi.org/10.1016/j.phymed.2019.153134

Ni S, Li C, Xu N, Liu X, Wang W, Chen W, et al. Follistatin-like protein 1 induction of matrix metalloproteinase 1, 3 and 13 gene expression in rheumatoid arthritis synoviocytes requires MAPK, JAK/STAT3 and NF-κB pathways. J Cell Physiol. 2018;234:454–463. doi: 10.1002/jcp.26580. DOI: https://doi.org/10.1002/jcp.26580

Ding Y, Wang Y, Zhang W, Jia Q, Wang X, Li Y, et al. Roles of biomarkers in myocardial fibrosis. Aging Dis. 2020;11:1157–1174. doi: 10.14336/AD.2020.0604. DOI: https://doi.org/10.14336/AD.2020.0604

Shooman ZAD, Al-Rubaie H. Comparison of circulating matrix metalloproteinase-2 levels in untreated acute myeloid leukemia patients with remission status. Iraqi J Hematol. 2023;12:84. doi: 10.4103/ijh.ijh_20_23. DOI: https://doi.org/10.4103/ijh.ijh_20_23

Jonsson A, Hjalmarsson C, Falk P, Ivarsson ML. Levels of matrix metalloproteinases differ in plasma and serum - Aspects regarding analysis of biological markers in cancer. Br J Cancer. 2016;115:703–706. doi: 10.1038/bjc.2016.127. DOI: https://doi.org/10.1038/bjc.2016.127

Tuncer T, Kaya A, Gulkesen A, Kal GA, Kaman D, Akgol G. Matrix metalloproteinase-3 levels in relation to disease activity and radiological progression in rheumatoid arthritis. Adv Clin Exp Med. 2019;28:665–670. doi: 10.17219/acem/94065. DOI: https://doi.org/10.17219/acem/94065

Basałygo M, Śliwińska J, Żbikowska-Gotz M, Lis K, Socha E, Bartuzi Z, et al. Assessment of serum concentrations of matrix metalloproteinase 1, matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases 1 in atopic dermatitis in correlation with disease severity and epidermal barrier parameters. Postepy Dermatol Alergol. 2021;38:773–779. doi: 10.5114/ada.2021.110043. DOI: https://doi.org/10.5114/ada.2021.110043

Fadda S, Abolkheir E, Afifi R, Gamal M. Serum matrix metalloproteinase-3 in rheumatoid arthritis patients: Correlation with disease activity and joint destruction. Egypt Rheumatol. 2016;38:153–159. doi: 10.1016/j.ejr.2016.01.001. DOI: https://doi.org/10.1016/j.ejr.2016.01.001

Lerner A, Neidhöfer S, Reuter S, Matthias T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2018;32:550–562. doi: 10.1016/j.berh.2019.01.006. DOI: https://doi.org/10.1016/j.berh.2019.01.006

Wei Y, Sun X, Hua M, Tan W, Wang F, Zhang M. Inhibitory effect of a novel antirheumatic drug T-614 on the IL-6-induced RANKL/OPG, IL-17, and MMP-3 expression in synovial fibroblasts from rheumatoid arthritis patients. Biomed Res Int. 2015;2015(1):214683. doi: 10.1155/2015/214683. DOI: https://doi.org/10.1155/2015/214683

Ismael MK, Aldabagh MAH, Rasuol LM. Matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-2 as diagnostic markers for COVID-19 infection. Iraqi J Sci. 2022;63:3679–3687. doi: 10.24996/ijs.2022.63.9.2. DOI: https://doi.org/10.24996/ijs.2022.63.9.2

Ma JD, Wei XN, Zheng DH, Mo YQ, Chen LF, Zhang X, et al. Continuously elevated serum matrix metalloproteinase-3 for 3 ~ 6months predict one-year radiographic progression in rheumatoid arthritis: A prospective cohort study. Arthritis Res Ther. 2015;17:1-3. doi: 10.1186/s13075-015-0803-2. DOI: https://doi.org/10.1186/s13075-015-0837-5

Takemoto T, Takahashi N, Kida D, Kaneko A, Hirano Y, Fujibayashi T, et al. Improvement in matrix metalloproteinase-3 independently predicts low disease activity at 52 weeks in bio-switch rheumatoid arthritis patients treated with abatacept MMP-3 improvement rate predicts LDA at 52 weeks. Clin Exp Rheumatol. 2020;38(5):933-939. PMID: 32083543.

Takeshita M, Kuno A, Suzuki K, Matsuda A, Shimazaki H, Nakagawa T, et al. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis. Arthritis Res Ther. 2016;18:1-9. doi: 10.1186/s13075-016-1013-2. DOI: https://doi.org/10.1186/s13075-016-1013-2

Hamdy F, Morad N, Tharwat S, El-khalek AA, Mahsoub N, Eltoraby E, et al. Matrix metalloproteinase-3 as a marker of subclinical activity in rheumatoid arthritis patients: Relation to ultrasonographic activity. Egypt Rheumatol. 2022;44:261–265. doi: 10.1016/j.ejr.2021.12.003. DOI: https://doi.org/10.1016/j.ejr.2021.12.003

Guerrero S, Sánchez-Tirado E, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Simultaneous determination of CXCL7 chemokine and MMP3 metalloproteinase as biomarkers for rheumatoid arthritis. Talanta. 2021;234:122705. doi: 10.1016/j.talanta.2021.122705. DOI: https://doi.org/10.1016/j.talanta.2021.122705

Sun S, Bay-Jensen AC, Karsdal MA, Siebuhr AS, Zheng Q, Maksymowych WP, et al. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet Disord. 2014;15:1-8. doi: 10.1186/1471-2474-15-93. DOI: https://doi.org/10.1186/1471-2474-15-93

Ma J Da, Zhou JJ, Zheng DH, Chen LF, Mo YQ, Wei XN, et al. Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis. Mediators Inflamm. 2014;2014(1):179284. doi: 10.1155/2014/179284. DOI: https://doi.org/10.1155/2014/179284

Galil SM, El-Shafey AM, Hagrass HA, Fawzy F, Sammak AE. Baseline serum level of matrix metalloproteinase-3 as a biomarker of progressive joint damage in rheumatoid arthritis patients. Int J Rheum Dis. 2016;19(4):377-384. doi: 10.1111/1756-185X.12434. DOI: https://doi.org/10.1111/1756-185X.12434

Ma MJ, Liu HC, Qu XQ, Wang JL. Matrix metalloproteinase-3 gene polymorphism and its mRNA expression in rheumatoid arthritis. Genet Mol Res. 2015;14:15652–15659. doi: 10.4238/2015.December.1.17. DOI: https://doi.org/10.4238/2015.December.1.17

Skacelova M, Hermanova Z, Horak P, Kazi A, Langova K. Higher levels of matrix metalloproteinase-3 in patients with RA reflect disease activity and structural damage. Biomed Papers. 2017;161:296–302. doi: 10.5507/bp.2017.015. DOI: https://doi.org/10.5507/bp.2017.015

Hattori Y, Kida D, Kaneko A. Normal serum matrix metalloproteinase-3 levels can be used to predict clinical remission and normal physical function in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38:181–187. doi: 10.1007/s10067-017-3829-9. DOI: https://doi.org/10.1007/s10067-017-3829-9

Carter JV, Pan J, Rai SN, Galandiuk S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery. 2016;159(6):1638-1645. doi: 10.1016/j.surg.2015.12.029. DOI: https://doi.org/10.1016/j.surg.2015.12.029

Behzadi P, García-Perdomo HA, Karpiński TM. Toll-like receptors: General molecular and structural biology. J Immunol Res. 2021;2021(1):9914854. doi: 10.1155/2021/9914854. DOI: https://doi.org/10.1155/2021/9914854

Wang Y, Zhang S, Li H, Wang H, Zhang T, Hutchinson MR, et al. Small-molecule modulators of toll-like receptors. Acc Chem Res. 2020;53:1046–1055. doi: 10.1021/acs.accounts.9b00631. DOI: https://doi.org/10.1021/acs.accounts.9b00631

Moresco EMY, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011;21(13):R488-493. doi: 10.1016/j.cub.2011.05.039. DOI: https://doi.org/10.1016/j.cub.2011.05.039

Pandolfi F, Franza L, Carusi V, Altamura S, Andriollo G, Nucera E. Interleukin-6 in rheumatoid arthritis. Int J Mol Sci. 2020;21:1–12. doi: 10.3390/ijms21155238. DOI: https://doi.org/10.3390/ijms21155238

Farooq M, Batool M, Kim MS, Choi S. Toll-like receptors as a therapeutic target in the era of immunotherapies. Front Cell Dev Biol. 2021;9:756315. doi: 10.3389/fcell.2021.756315. DOI: https://doi.org/10.3389/fcell.2021.756315

Goh FG, Midwood KS. Intrinsic danger: Activation of Toll-like receptors in rheumatoid arthritis. Rheumatology. 2012;51:7–23. doi: 10.1093/RHEUMATOLOGY/KER257. DOI: https://doi.org/10.1093/rheumatology/ker257

Chen YH, Wu KH, Wu HP. Unraveling the complexities of toll-like receptors: From molecular mechanisms to clinical applications. Int J Mol Sci. 2024;25:5037. doi: 10.3390/ijms25095037. DOI: https://doi.org/10.3390/ijms25095037

Al-Hasso IK. Assessment of serum soluble toll-like receptor-4 and interleukin-8 as biomarkers in patients with breast cancer. Al-Rafidain J Med Sci. 2024;6:167–171. doi: 10.54133/ajms.v6i1.568. DOI: https://doi.org/10.54133/ajms.v6i1.568

Asami J, Shimizu T. Structural and functional understanding of the toll-like receptors. Protein Sci. 2021;30:761–772. doi: 10.1002/pro.4043. DOI: https://doi.org/10.1002/pro.4043

Ren W, Zhao L, Sun Y, Wang X, Shi X. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases. Mol. Med. 2023;29(1):117. doi: 10.1186/s10020-023-00717-3. DOI: https://doi.org/10.1186/s10020-023-00717-3

Kalliolias GD, Basdra EK, Papavassiliou AG. Targeting TLR signaling cascades in systemic lupus erythematosus and rheumatoid arthritis: An update. Biomedicines. 2024;12(1):138. doi: 10.3390/biomedicines12010138. DOI: https://doi.org/10.3390/biomedicines12010138

Abed RM, Abdulmalek HW, Yaaqoob LA, Altaee MF, Kamona ZK. Genetic polymorphism of TLR5 and TLR6 in Iraqi patients with heart failure disease. Iraqi J Sci 2023;64:1662–1674. doi: 10.24996/ijs.2023.64.4.9. DOI: https://doi.org/10.24996/ijs.2023.64.4.9

Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022;13:812774. doi: 10.3389/fimmu.2022.812774. DOI: https://doi.org/10.3389/fimmu.2022.812774

Marks KE, Cho K, Stickling C, Reynolds JM. Toll-like receptor 2 in autoimmune inflammation. Immune Netw. 2021;21(3):e18. doi: 10.4110/in.2021.21.e18. DOI: https://doi.org/10.4110/in.2021.21.e18

Hossain MJ, Morandi E, Tanasescu R, Frakich N, Caldano M, Onion D, et al. The soluble form of toll-like receptor 2 is elevated in serum of multiple sclerosis patients: A novel potential disease biomarker. Front Immunol. 2018;9:304348. doi: 10.3389/fimmu.2018.00457. DOI: https://doi.org/10.3389/fimmu.2018.00457

Fakhry N, Gowily A, Okda T, Houssen M. Serum soluble toll-like receptor 2 and 4 as diagnostic and prognostic biomarkers for non-Hodgkin lymphoma. Wspolczesna Onkologia. 2020;24:157–162. doi: 10.5114/WO.2020.100270. DOI: https://doi.org/10.5114/wo.2020.100270

AlQallaf H, Hamada Y, Blanchard S, Shin D, Gregory R, Srinivasan M. Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis. PLoS One. 2018;13(12):e0200231. doi: 10.1371/journal.pone.0200231. DOI: https://doi.org/10.1371/journal.pone.0200231

Dulay AT, Buhimschi CS, Zhao G, Oliver EA, Mbele A, Jing S, et al. Soluble TLR2 Is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J Immunol. 2009;182:7244-7253. doi: 10.4049/JIMMUNOL.0803517. DOI: https://doi.org/10.4049/jimmunol.0803517

Henrick BM, Yao XD, Taha AY, Bruce German J, Rosenthal KL. Insights into soluble Toll-like receptor 2 as a downregulator of virally induced inflammation. Front Immunol. 2016;7:208691. doi: 10.3389/fimmu.2016.00291. DOI: https://doi.org/10.3389/fimmu.2016.00291

Upasani V, ter Ellen BM, Sann S, Lay S, Heng S, Laurent D, et al. Characterization of soluble TLR2 and CD14 levels during acute dengue virus infection. Heliyon. 2023;9(6):e17265. doi: 10.1016/j.heliyon.2023.e17265. DOI: https://doi.org/10.1016/j.heliyon.2023.e17265

LeBouder E, Rey-Nores JE, Rushmere NK, Grigorov M, Lawn SD, Affolter M, et al. Soluble forms of toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J Immunol. 2003;171:6680–6689. doi: 10.4049/JIMMUNOL.171.12.6680. DOI: https://doi.org/10.4049/jimmunol.171.12.6680

Seibl R, Birchler T, Loeliger S, Hossle JP, Gay RE, Saurenmann T, et al. Expression and regulation of toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol. 2003;162:1221-1227. doi: 10.1016/S0002-9440(10)63918-1. DOI: https://doi.org/10.1016/S0002-9440(10)63918-1

Nic An Ultaigh S, Saber TP, McCormick J, Connolly M, Dellacasagrande J, Keogh B, et al. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures. Arthritis Res Ther. 2011;13;1-9. doi: 10.1186/ar3261. DOI: https://doi.org/10.1186/ar3261

Lacerte P, Brunet A, Egarnes B, Duchêne B, Brown JP, Gosselin J. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res Ther. 2016;18;1-4. doi: 10.1186/s13075-015-0901-1. DOI: https://doi.org/10.1186/s13075-015-0901-1

Eser B, Sahin N. Evaluation of tool-like receptor-2 and 4 and interleukin-6 gene expressions in Turkish rheumatoid arthritis patients. Clin Rheumatol. 2016;35:2693–2697. doi: 10.1007/s10067-016-3282-1. DOI: https://doi.org/10.1007/s10067-016-3282-1

Thwaites RS, Unterberger S, Chamberlain G, Walker-Bone K, Davies KA, Sacre S. TLR1/2 and 5 induce elevated cytokine levels from rheumatoid arthritis monocytes independent of ACPA or RF autoantibody status. Rheumatology (United Kingdom). 2020;59:3533–3539. doi: 10.1093/rheumatology/keaa220. DOI: https://doi.org/10.1093/rheumatology/keaa220

de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, et al. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med. 2015;240:1019–1028. doi: 10.1177/1535370215593826. DOI: https://doi.org/10.1177/1535370215593826

Weinmann D, Schlangen K, André S, Schmidt S, Walzer SM, Kubista B, et al. Galectin-3 induces a pro-degradative/inflammatory gene signature in human chondrocytes, teaming up with galectin-1 in osteoarthritis pathogenesis. Sci Rep. 2016;6(1):39112. doi: 10.1038/srep39112. DOI: https://doi.org/10.1038/srep39112

Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in cardiovascular diseases. Int J Mol Sci. 2020;21:1–18. doi: 10.3390/ijms21239232. DOI: https://doi.org/10.3390/ijms21239232

Srejovic I, Selakovic D, Jovicic N, Jakovljević V, Lukic ML, Rosic G. Galectin-3: Roles in neurodevelopment, neuroinflammation, and behavior. Biomolecules. 2020;10(5):798. doi: 10.3390/biom10050798. DOI: https://doi.org/10.3390/biom10050798

de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012;272:55–64. doi: 10.1111/j.1365-2796.2011.02476.x. DOI: https://doi.org/10.1111/j.1365-2796.2011.02476.x

Andrews AR, Fernandes AD, Brownmiller SE, Hanna Y, Fisher MC, Huang CA. Blocking extracellular Galectin-3 in patients with osteoarthritis. Contemp Clin Trials Commun. 2020;17:100500. doi: 10.1016/j.conctc.2019.100500. DOI: https://doi.org/10.1016/j.conctc.2019.100500

Hu Y, Yéléhé-Okouma M, Ea HK, Jouzeau JY, Reboul P. Galectin-3: A key player in arthritis. Joint Bone Spine. 2017;84:15–20. doi: 10.1016/j.jbspin.2016.02.029. DOI: https://doi.org/10.1016/j.jbspin.2016.02.029

Janelle-Montcalm A, Boileau C, Poirier F, Pelletier JP, Guévremont M, Duval N, et al. Extracellular localization of galectin-3 has a deleterious role in joint tissues. Arthritis Res Ther. 2007;9;1-9. doi: 10.1186/ar2130. DOI: https://doi.org/10.1186/ar2130

Downloads

Published

2024-08-07

How to Cite

Hameed, M. R., Khaleel, F. M., & Gorial, F. I. (2024). Galectin-3, Matrix Metalloproteinase-3 and TLR-2 Receptor as Novel Biomarkers in the Diagnosis of Rheumatoid Arthritis. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 7(1), 98–108. https://doi.org/10.54133/ajms.v7i1.1097

Issue

Section

Review article

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.